Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Three-Dimensional Graph Matching To Identify Secondary Structure Correspondence Of Medium-Resolution Cryo-Em Density Maps, Bahareh Behkamal, Mahmoud Naghibzadeh, Mohammad Reza Saberi, Zeinab Amiri Tehranizadeh, Andrea Pagnani, Kamal Al Nasr Nov 2021

Three-Dimensional Graph Matching To Identify Secondary Structure Correspondence Of Medium-Resolution Cryo-Em Density Maps, Bahareh Behkamal, Mahmoud Naghibzadeh, Mohammad Reza Saberi, Zeinab Amiri Tehranizadeh, Andrea Pagnani, Kamal Al Nasr

Computer Science Faculty Research

Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant role in protein structure determination in recent years. Compared to the traditional methods of X-ray crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4–10 Å) for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly determine the structure of proteins at atomic level resolutions, or even at their amino acid residue backbones. At such a resolution, only the position and orientation of secondary structure elements (SSEs) such …


Identification Of Hydrated And Dehydrated Lipids And Protein Secondary Structures In Seeds Of Cotton (Gossypium Hirsutum) Line, Diwas Kumar Silwal, Nsoki Phambu, Bharat Pokharel, Ahmad Naseer Aziz Aug 2017

Identification Of Hydrated And Dehydrated Lipids And Protein Secondary Structures In Seeds Of Cotton (Gossypium Hirsutum) Line, Diwas Kumar Silwal, Nsoki Phambu, Bharat Pokharel, Ahmad Naseer Aziz

Chemistry Faculty Research

Cottonseeds from two parents (TM-1 and 3-79) and their 17 progeny (chromosomal substitution) lines were analyzed for various secondary structures of proteins and moisture content of lipids, separately in hulls and kernels. Fourier transform infrared spectroscopy (FTIR) was used on mature seeds from Upland cotton (G. hirsutum) progeny lines and parents. Based on secondary structures of proteins and hydration levels of lipids, differences were observed among the cottonseeds. The two progeny lines – CS-B12sh and CS-B22sh retained lipid moisture content and protein secondary structures similar to both parents, while CS-B06, CS-B15sh and CS-B16 remained distinct from either parent. On the …