Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosanalginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


An Active Biodegradable Layer-By-Layer Film Based On Chitosan-Alginate-Tio2 For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Shiviani Pathania, Amit K. Jaiswal, Swarma Jaiswal Oct 2022

An Active Biodegradable Layer-By-Layer Film Based On Chitosan-Alginate-Tio2 For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Shiviani Pathania, Amit K. Jaiswal, Swarma Jaiswal

Articles

This work aims at developing biodegradable active chitosan-alginate layer-by-layer bio-nanocomposite film with TiO2NPs using the solvent casting method followed by CaCl2 crosslinking for food packaging applications. The developed films enhanced the tensile strength and elongation at break by 14.76 and 2 folds (p < 0.05) respectively. The UV barrier properties of CH-SA-0.3%TiO2 film increased by 88.6%, while the film transparency decreased by 87.23%. All films showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene. The film with 0.1%TiO2 showed the complete killing of gram-positive bacteria. The CH-SA-0.1%TiO2 film was completely biodegraded during the …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal May 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosan-alginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal Sep 2021

Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal

Articles

Biopolymers have been used in food packaging in recent years due to high pollution rates and decreased biodegradation of synthetic polymers. Chitosan (CH) and Sodium alginate (SA) are both biodegradable biopolymers with excellent film forming capability. TiO2 nanoparticles have high mechanical strength, degradation ability and antimicrobial properties, which are beneficial in food packaging. The aim of the current work is to develop the biodegradable multifunctional nanocomposite film for fruit (i.e., Pear) packaging applications. Bionanocomposite film was prepared by solvent casting method using CH-SA and various concentrations of TiO2. The multifunctional properties such as UV barrier, thermal, water retention, mechanical, chemical, …


Orange Juices Enriched With Chitosan: Optimisation For Extending The Shelf-Life, Catherine Barry-Ryan, Ana Belen Martin-Diana, Daniel Rico, J. Barat Jul 2009

Orange Juices Enriched With Chitosan: Optimisation For Extending The Shelf-Life, Catherine Barry-Ryan, Ana Belen Martin-Diana, Daniel Rico, J. Barat

Articles

Optimisation of the incorporation of chitosan in orange juice was accomplished by the evaluation of quality and nutritional markers. Response surface methodology was applied to obtain quadratic and second degree response surface model equations. The analyses showed that increases in chitosan concentration extended the quality of the orange juice significantly (p < 0.05), reducing enzymatic and non-enzymatic browning and controlling the spoilage during the storage time; however, concentrations N 1 g L− 1 produced a significant (p < 0.05) reduction in the concentrations of ascorbic acid and carotenoids associated with the positive charge of chitosan and its ability to flocculate and coagulate negatively charged substances. Also, concentrations N 1 g L− 1 were scored as unacceptable for the sensory panel due to an increase in bitterness. The study recommends the use of chitosan at concentrations up to 1 g L− 1 to extend quality and preserve ascorbic acid and carotenoids during storage time of fresh orange juice, thus avoiding the use of standard thermal treatments which produces a negative impact on the nutritional value. Industrial relevance: One of the major problems of fresh orange juice is its limited shelf-life. Spoilage and quick degradation of vitamins are two of the most important causes of quality loss during the shelf-life of this product. Moreover, the U. S. Food and Drug Administration issued a warning to consumers against drinking unpasteurised orange juice products because of the potential contamination with Salmonella typhimurium and its association with an outbreak of human disease caused by this organism [FDA issues nationwide health alert on Orchid Island unpasteurised orange juice. Products Recalls, Market Withdrawals and Safety Alerts.]. The main objective of this study was the study of chitosan as a natural preservative for extending the shelf-life of orange juice and as an alternative to pasteurisation.