Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Towards A Systems Approach To Understanding Plant Cell Walls, Chris R. Somerville, Stefan Bauer, Ginger Brininstool, Michelle Facette, Thorsten Hamann, Jennifer Milne, Erin Osborne, Alex Paradez, Staffan Persson, Ted K. Raab, Sonja Vorwerk, Heather Youngs Dec 2004

Towards A Systems Approach To Understanding Plant Cell Walls, Chris R. Somerville, Stefan Bauer, Ginger Brininstool, Michelle Facette, Thorsten Hamann, Jennifer Milne, Erin Osborne, Alex Paradez, Staffan Persson, Ted K. Raab, Sonja Vorwerk, Heather Youngs

Ted K. Raab

One of the defining features of plants is a body plan based on the physical properties of cell walls. Structural analyses of the polysaccharide components, combined with highresolution imaging, have provided the basis for much of the current understanding of cell walls. The application of genetic methods has begun to provide new insights into how walls are made, how they are controlled, and how they function. However, progress in integrating biophysical, developmental, and genetic information into a useful model will require a system-based approach.


Mutations In Pmr5 Result In Powdery Mildew Resistance And Altered Cell Wall Composition, John P. Vogel, Ted K. Raab, Chris R. Somerville, Shauna C. Somerville Dec 2004

Mutations In Pmr5 Result In Powdery Mildew Resistance And Altered Cell Wall Composition, John P. Vogel, Ted K. Raab, Chris R. Somerville, Shauna C. Somerville

Ted K. Raab

Powdery mildews and other obligate biotrophic pathogens are highly adapted to their hosts and often show limited host ranges. One facet of such host specialization is likely to be penetration of the host cell wall, a major barrier to infection. A mutation in the pmr5 gene rendered Arabidopsis resistant to the powdery mildew species Erysiphe cichoracearum and Erysiphe orontii, but not to the unrelated pathogens Pseudomonas syringae or Peronospora parasitica. PMR5 belongs to a large family of plant-specific genes of unknown function. pmr5-mediated resistance did not require signaling through either the salicylic acid or jasmonic acid/ ethylene defense pathways, suggesting …


Ecological And Agricultural Applications Of Synchrotron Ir Microscopy, Ted K. Raab, John P. Vogel Sep 2004

Ecological And Agricultural Applications Of Synchrotron Ir Microscopy, Ted K. Raab, John P. Vogel

Ted K. Raab

The diffraction-limited spot size of synchrotron-based IR microscopes provides cell-specific, spectrochemical imaging of cleared leaf, stem and root tissues of the model genetic organism Arabidopsis thaliana, and mutant plants created either by T-DNA insertional inactivation or chemical mutagenesis. Spectra in the wavelength region from 6 to 12 microns provide chemical and physical information on the cell wall polysaccharides of mutants lacking particular biosynthetic enzymes (‘‘Cellulose synthase-like’’ genes). In parallel experiments, synchrotron IR microscopy delineates the role of Arabidopsis cell wall enzymes as susceptibility factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes, pmr4, pmr5, …