Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 62

Full-Text Articles in Life Sciences

Identification Of Lipid Droplet Structure-Like/Resident Proteins In Caenorhabditis Elegans., Huimin Na, Peng Zhang, Yong Chen, Xiaotong Zhu, Yi Liu, Yangli Liu, Kang Xie, Ningyi Xu, Fuquan Yang, Yong Yu, Simon Cichello, Ho Yi Mak, Meng C Wang, Hong Zhang, Pingsheng Liu Sep 2019

Identification Of Lipid Droplet Structure-Like/Resident Proteins In Caenorhabditis Elegans., Huimin Na, Peng Zhang, Yong Chen, Xiaotong Zhu, Yi Liu, Yangli Liu, Kang Xie, Ningyi Xu, Fuquan Yang, Yong Yu, Simon Cichello, Ho Yi Mak, Meng C Wang, Hong Zhang, Pingsheng Liu

Yong Chen

The lipid droplet (LD) is a cellular organelle that stores neutral lipids in cells and has been linked with metabolic disorders. Caenorhabditis elegans has many characteristics which make it an excellent animal model for studying LDs. However, unlike in mammalian cells, no LD structure-like/resident proteins have been identified in C. elegans, which has limited the utility of this model for the study of lipid storage and metabolism. Herein based on three lines of evidence, we identified that MDT-28 and DHS-3 previously identified in C. elegans LD proteome were two LD structure-like/resident proteins. First, MDT-28 and DHS-3 were found to be …


Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder Oct 2015

Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder

Sean P. Ryder

Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that …


Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros

Victor R. Ambros

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant …


Robust Distal Tip Cell Pathfinding In The Face Of Temperature Stress Is Ensured By Two Conserved Micrornas In Caenorhabditis Elegans, Samantha L. Burke, Molly Hammell, Victor R. Ambros Oct 2015

Robust Distal Tip Cell Pathfinding In The Face Of Temperature Stress Is Ensured By Two Conserved Micrornas In Caenorhabditis Elegans, Samantha L. Burke, Molly Hammell, Victor R. Ambros

Victor R. Ambros

Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically …


Genome-Scale Spatiotemporal Analysis Of Caenorhabditis Elegans Microrna Promoter Activity, Natalia Julia Martinez, Maria C. Ow, John S. Reece-Hoyes, M. Inmaculada Barrasa, Victor R. Ambros, Albertha J. M. Walhout Oct 2015

Genome-Scale Spatiotemporal Analysis Of Caenorhabditis Elegans Microrna Promoter Activity, Natalia Julia Martinez, Maria C. Ow, John S. Reece-Hoyes, M. Inmaculada Barrasa, Victor R. Ambros, Albertha J. M. Walhout

Victor R. Ambros

The Caenorhabditis elegans genome encodes more than 100 microRNAs (miRNAs). Genetic analyses of miRNA deletion mutants have only provided limited insights into miRNA function. To gain insight into the function of miRNAs, it is important to determine their spatiotemporal expression pattern. Here, we use miRNA promoters driving the expression of GFP as a proxy for miRNA expression. We describe a set of 73 transgenic C. elegans strains, each expressing GFP under the control of a miRNA promoter. Together, these promoters control the expression of 89 miRNAs (66% of all predicted miRNAs). We find that miRNA promoters drive GFP expression in …


Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li Oct 2015

Inhibiting Mirna In Caenorhabditis Elegans Using A Potent And Selective Antisense Reagent, Genhua Zheng, Victor R. Ambros, Wen-Hong Li

Victor R. Ambros

BACKGROUND: Antisense reagents can serve as efficient and versatile tools for studying gene function by inhibiting nucleic acids in vivo. Antisense reagents have particular utility for the experimental manipulation of the activity of microRNAs (miRNAs), which are involved in the regulation of diverse developmental and physiological pathways in animals. Even in traditional genetic systems, such as the nematode Caenorhabditis elegans, antisense reagents can provide experimental strategies complementary to mutational approaches. Presently no antisense reagents are available for inhibiting miRNAs in the nematode C. elegans. RESULTS: We have developed a new class of fluorescently labelled antisense reagents to inhibit miRNAs in …


The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard Oct 2015

The Decapping Scavenger Enzyme Dcs-1 Controls Microrna Levels In Caenorhabditis Elegans, Gabriel Bosse, Stefan Ruegger, Maria Ow, Alejandro Vasquez-Rifo, Evelyne Rondeau, Victor Ambros, Helge Grosshans, Martin Simard

Victor R. Ambros

In metazoans, microRNAs play a critical role in the posttranscriptional regulation of genes required for cell proliferation and differentiation. MicroRNAs themselves are regulated by a multitude of mechanisms influencing their transcription and posttranscriptional maturation. However, there is only sparse knowledge on pathways regulating the mature, functional form of microRNA. Here, we uncover the implication of the decapping scavenger protein DCS-1 in the control of microRNA turnover. In Caenorhabditis elegans, mutations in dcs-1 increase the levels of functional microRNAs. We demonstrate that DCS-1 interacts with the exonuclease XRN-1 to promote microRNA degradation in an independent manner from its known decapping scavenger …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Micrornas And Developmental Timing, Victor Ambros Oct 2015

Micrornas And Developmental Timing, Victor Ambros

Victor R. Ambros

MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.


Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros Oct 2015

Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period …


Nhl-2 Modulates Microrna Activity In Caenorhabditis Elegans, Christopher Hammell, Isabella Lubin, Peter Boag, T. Keith Blackwell, Victor Ambros Oct 2015

Nhl-2 Modulates Microrna Activity In Caenorhabditis Elegans, Christopher Hammell, Isabella Lubin, Peter Boag, T. Keith Blackwell, Victor Ambros

Victor R. Ambros

TRIM-NHL proteins represent a large class of metazoan proteins implicated in development and disease. We demonstrate that a C. elegans TRIM-NHL protein, NHL-2, functions as a cofactor for the microRNA-induced silencing complex (miRISC) and thereby enhances the posttranscriptional repression of several genetically verified microRNA targets, including hbl-1 and let-60/Ras (by the let-7 family of microRNAs) and cog-1 (by the lsy-6 microRNA). NHL-2 is localized to cytoplasmic P-bodies and physically associates with the P-body protein CGH-1 and the core miRISC components ALG-1/2 and AIN-1. nhl-2 and cgh-1 mutations compromise the repression of microRNA targets in vivo but do not affect microRNA …


Mirwip: Microrna Target Prediction Based On Microrna-Containing Ribonucleoprotein-Enriched Transcripts, Molly Hammell, Dang Long, Liang Zhang, Andrew Lee, C. Steven Carmack, Min Han, Ye Ding, Victor Ambros Oct 2015

Mirwip: Microrna Target Prediction Based On Microrna-Containing Ribonucleoprotein-Enriched Transcripts, Molly Hammell, Dang Long, Liang Zhang, Andrew Lee, C. Steven Carmack, Min Han, Ye Ding, Victor Ambros

Victor R. Ambros

Target prediction for animal microRNAs (miRNAs) has been hindered by the small number of verified targets available to evaluate the accuracy of predicted miRNA-target interactions. Recently, a dataset of 3,404 miRNA-associated mRNA transcripts was identified by immunoprecipitation of the RNA-induced silencing complex components AIN-1 and AIN-2. Our analysis of this AIN-IP dataset revealed enrichment for defining characteristics of functional miRNA-target interactions, including structural accessibility of target sequences, total free energy of miRNA-target hybridization and topology of base-pairing to the 5' seed region of the miRNA. We used these enriched characteristics as the basis for a quantitative miRNA target prediction method, …


Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros

Victor R. Ambros

Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting …


Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros Oct 2015

Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros

Victor R. Ambros

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs …


The Flywch Transcription Factors Flh-1, Flh-2, And Flh-3 Repress Embryonic Expression Of Microrna Genes In C. Elegans, Maria C. Ow, Natalia Julia Martinez, Philip H. Olsen, Howard S. Silverman, M. Inmaculada Barrasa, Barbara Conradt, Albertha J. M. Walhout, Victor R. Ambros Oct 2015

The Flywch Transcription Factors Flh-1, Flh-2, And Flh-3 Repress Embryonic Expression Of Microrna Genes In C. Elegans, Maria C. Ow, Natalia Julia Martinez, Philip H. Olsen, Howard S. Silverman, M. Inmaculada Barrasa, Barbara Conradt, Albertha J. M. Walhout, Victor R. Ambros

Victor R. Ambros

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally via antisense base-pairing. Although miRNAs are involved in a variety of important biological functions, little is known about their transcriptional regulation. Using yeast one-hybrid assays, we identified transcription factors with a FLYWCH Zn-finger DNA-binding domain that bind to the promoters of several Caenorhabditis elegans miRNA genes. The products of the flh-1 and flh-2 genes function redundantly to repress embryonic expression of lin-4, mir-48, and mir-241, miRNA genes that are normally expressed only post-embryonically. Although single mutations in either flh-1 or flh-2 genes result in a viable phenotype, double mutation …


Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros Oct 2015

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros

Victor R. Ambros

Why do many microRNA gene mutants display no evident phenotype? Multiply mutant worms that are selectively impaired in genetic regulatory network activities have been used to uncover previously unknown functions for numerous Caenorhabditis elegans microRNAs.


A C. Elegans Genome-Scale Microrna Network Contains Composite Feedback Motifs With High Flux Capacity, Natalia Julia Martinez, Maria C. Ow, M. Inmaculada Barrasa, Molly Hammell, Reynaldo Sequerra, Lynn Doucette-Stamm, Frederick P. Roth, Victor R. Ambros, Albertha J. M. Walhout Oct 2015

A C. Elegans Genome-Scale Microrna Network Contains Composite Feedback Motifs With High Flux Capacity, Natalia Julia Martinez, Maria C. Ow, M. Inmaculada Barrasa, Molly Hammell, Reynaldo Sequerra, Lynn Doucette-Stamm, Frederick P. Roth, Victor R. Ambros, Albertha J. M. Walhout

Victor R. Ambros

MicroRNAs (miRNAs) and transcription factors (TFs) are primary metazoan gene regulators. Whereas much attention has focused on finding the targets of both miRNAs and TFs, the transcriptional networks that regulate miRNA expression remain largely unexplored. Here, we present the first genome-scale Caenorhabditis elegans miRNA regulatory network that contains experimentally mapped transcriptional TF --> miRNA interactions, as well as computationally predicted post-transcriptional miRNA --> TF interactions. We find that this integrated miRNA network contains 23 miRNA <--> TF composite feedback loops in which a TF that controls a miRNA is itself regulated by that same miRNA. By rigorous network randomizations, we show …


Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros Oct 2015

Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros

Victor R. Ambros

Comment on: The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell-cycle quiescence during C. elegans development. Buck SH, et al. Cell Cycle 2009; 8:2613-20.


Most Caenorhabditis Elegans Micrornas Are Individually Not Essential For Development Or Viability, Eric A. Miska, Ezequiel Alvarez-Saavedra, Allison Abbott, Nelson C. Lau, Andrew B. Hellman, Shannon M. Mcgonagle, David P. Bartel, Victor R. Ambros, H. Robert Horvitz Oct 2015

Most Caenorhabditis Elegans Micrornas Are Individually Not Essential For Development Or Viability, Eric A. Miska, Ezequiel Alvarez-Saavedra, Allison Abbott, Nelson C. Lau, Andrew B. Hellman, Shannon M. Mcgonagle, David P. Bartel, Victor R. Ambros, H. Robert Horvitz

Victor R. Ambros

MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 83% of known C. elegans miRNAs. We find that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in most miRNA genes do not result in grossly abnormal phenotypes. These observations are consistent with the hypothesis that there is significant functional redundancy among miRNAs or among …


A Compendium Of Caenorhabditis Elegans Rna Binding Proteins Predicts Extensive Regulation At Multiple Levels, Alex Tamburino, Sean Ryder, Albertha Walhout May 2015

A Compendium Of Caenorhabditis Elegans Rna Binding Proteins Predicts Extensive Regulation At Multiple Levels, Alex Tamburino, Sean Ryder, Albertha Walhout

Sean P. Ryder

Gene expression is regulated at multiple levels, including transcription and translation, as well as mRNA and protein stability. Although systems-level functions of transcription factors and microRNAs are rapidly being characterized, few studies have focused on the posttranscriptional gene regulation by RNA binding proteins (RBPs). RBPs are important to many aspects of gene regulation. Thus, it is essential to know which genes encode RBPs, which RBPs regulate which gene(s), and how RBP genes are themselves regulated. Here we provide a comprehensive compendium of RBPs from the nematode Caenorhabditis elegans (wRBP1.0). We predict that as many as 887 (4.4%) of C. elegans …


Molecular Basis Of Rna Recognition By The Embryonic Polarity Determinant Mex-5, John Pagano, Brian Farley, Lisa Mccoig, Sean Ryder May 2015

Molecular Basis Of Rna Recognition By The Embryonic Polarity Determinant Mex-5, John Pagano, Brian Farley, Lisa Mccoig, Sean Ryder

Sean P. Ryder

Embryonic development requires maternal proteins and RNA. In Caenorhabditis elegans, a gradient of CCCH tandem zinc finger (TZF) proteins coordinates axis polarization and germline differentiation. These proteins govern expression from maternal mRNAs by an unknown mechanism. Here we show that the TZF protein MEX-5, a primary anterior determinant, is an RNA-binding protein that recognizes linear RNA sequences with high affinity but low specificity. The minimal binding site is a tract of six or more uridines within a 9-13-nucleotide window. This sequence is remarkably abundant in the 3'-untranslated region of C. elegans transcripts, demonstrating that MEX-5 alone cannot specify mRNA target …


A Quantitative Rna Code For Mrna Target Selection By The Germline Fate Determinant Gld-1, Jane Wright, Dimos Gaidatzis, Mathias Senften, Brian Farley, Eric Westhof, Sean Ryder, Rafal Ciosk May 2015

A Quantitative Rna Code For Mrna Target Selection By The Germline Fate Determinant Gld-1, Jane Wright, Dimos Gaidatzis, Mathias Senften, Brian Farley, Eric Westhof, Sean Ryder, Rafal Ciosk

Sean P. Ryder

RNA-binding proteins (RBPs) are critical regulators of gene expression. To understand and predict the outcome of RBP-mediated regulation a comprehensive analysis of their interaction with RNA is necessary. The signal transduction and activation of RNA (STAR) family of RBPs includes developmental regulators and tumour suppressors such as Caenorhabditis elegans GLD-1, which is a key regulator of germ cell development. To obtain a comprehensive picture of GLD-1 interactions with the transcriptome, we identified GLD-1-associated mRNAs by RNA immunoprecipitation followed by microarray detection. Based on the computational analysis of these mRNAs we generated a predictive model, where GLD-1 association with mRNA is …


Rna Target Specificity Of The Embryonic Cell Fate Determinant Pos-1, Brian Farley, John Pagano, Sean Ryder May 2015

Rna Target Specificity Of The Embryonic Cell Fate Determinant Pos-1, Brian Farley, John Pagano, Sean Ryder

Sean P. Ryder

Specification of Caenorhabditis elegans body axes and cell fates occurs prior to the activation of zygotic transcription. Several CCCH-type tandem zinc finger (TZF) proteins coordinate local activation of quiescent maternal mRNAs after fertilization, leading to asymmetric expression of factors required for patterning. The primary determinant of posterior fate is the TZF protein POS-1. Mutants of pos-1 are maternal effect lethal with a terminal phenotype that includes excess pharyngeal tissue and no endoderm or germline. Here, we delineate the consensus POS-1 recognition element (PRE) required for specific recognition of its target mRNAs. The PRE is necessary but not sufficient to pattern …


Fbf Represses The Cip/Kip Cell-Cycle Inhibitor Cki-2 To Promote Self-Renewal Of Germline Stem Cells In C. Elegans, Irene Kalchhauser, Brian Farley, Sandra Pauli, Sean Ryder, Rafal Ciosk May 2015

Fbf Represses The Cip/Kip Cell-Cycle Inhibitor Cki-2 To Promote Self-Renewal Of Germline Stem Cells In C. Elegans, Irene Kalchhauser, Brian Farley, Sandra Pauli, Sean Ryder, Rafal Ciosk

Sean P. Ryder

Although the decision between stem cell self-renewal and differentiation has been linked to cell-cycle modifications, our understanding of cell-cycle regulation in stem cells is very limited. Here, we report that FBF/Pumilio, a conserved RNA-binding protein, promotes self-renewal of germline stem cells by repressing CKI-2(Cip/Kip), a Cyclin E/Cdk2 inhibitor. We have previously shown that repression of CYE-1 (Cyclin E) by another RNA-binding protein, GLD-1/Quaking, promotes germ cell differentiation. Together, these findings suggest that a post-transcriptional regulatory circuit involving FBF and GLD-1 controls the self-renewal versus differentiation decision in the germline by promoting high CYE-1/CDK-2 activity in stem cells, and inhibiting CYE-1/CDK-2 …


A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros Nov 2009

A Feedback Circuit Involving Let-7-Family Mirnas And Daf-12 Integrates Environmental Signals And Developmental Timing In Caenorhabditis Elegans, Christopher M. Hammell, Xantha Karp, Victor R. Ambros

Victor R. Ambros

Animal development is remarkably robust; cell fates are specified with spatial and temporal precision despite physiological and environmental contingencies. Favorable conditions cause Caenorhabditis elegans to develop rapidly through four larval stages (L1-L4) to the reproductive adult. In unfavorable conditions, L2 larvae can enter the developmentally quiescent, stress-resistant dauer larva stage, enabling them to survive for prolonged periods before completing development. A specific progression of cell division and differentiation events occurs with fidelity during the larval stages, regardless of whether an animal undergoes continuous or dauer-interrupted development. The temporal patterning of developmental events is controlled by the heterochronic genes, whose products …


The Regulation Of Genes And Genomes By Small Rnas., Victor Ambros, Xuemei Chen Apr 2007

The Regulation Of Genes And Genomes By Small Rnas., Victor Ambros, Xuemei Chen

Victor R. Ambros

A recent Keystone Symposium on 'MicroRNAs and siRNAs: Biological Functions and Mechanisms' was organized by David Bartel and Shiv Grewal (and was held in conjunction with 'RNAi for Target Validation and as a Therapeutic', organized by Stephen Friend and John Maraganore). The 'MicroRNAs and siRNAs' meeting brought together scientists working on diverse biological aspects of small regulatory RNAs, including microRNAs, small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs and rasiRNAs). Among the themes discussed were the diversity of small regulatory RNAs and their developmental functions, their biogenesis, the identification of their regulatory targets, their mechanisms of action, and their roles …


Potent Effect Of Target Structure On Microrna Function, Peter Williams, Dang Long, Rosalind Lee, Chi Chan, Victor Ambros, Ye Ding Mar 2007

Potent Effect Of Target Structure On Microrna Function, Peter Williams, Dang Long, Rosalind Lee, Chi Chan, Victor Ambros, Ye Ding

Victor R. Ambros

MicroRNAs (miRNAs) are small noncoding RNAs that repress protein synthesis by binding to target messenger RNAs. We investigated the effect of target secondary structure on the efficacy of repression by miRNAs. Using structures predicted by the Sfold program, we model the interaction between an miRNA and a target as a two-step hybridization reaction: nucleation at an accessible target site followed by hybrid elongation to disrupt local target secondary structure and form the complete miRNA-target duplex. This model accurately accounts for the sensitivity to repression by let-7 of various mutant forms of the Caenorhabditis elegans lin-41 3' untranslated region and for …


The 2007 George W. Beadle Medal. Robert K. Herman., Victor Ambros Jan 2007

The 2007 George W. Beadle Medal. Robert K. Herman., Victor Ambros

Victor R. Ambros

No abstract provided.