Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Role Of Gluk1 Kainate Receptors In Seizures, Epileptic Discharges, And Epileptogenesis, Brita Fritsch, Janine Reis, Maciej Gasior, Rafal M. Kaminski, Michael A. Rogawski Apr 2014

Role Of Gluk1 Kainate Receptors In Seizures, Epileptic Discharges, And Epileptogenesis, Brita Fritsch, Janine Reis, Maciej Gasior, Rafal M. Kaminski, Michael A. Rogawski

Michael A. Rogawski

Kainate receptors containing the GluK1 subunit have an impact on excitatory and inhibitory neurotransmission in brain regions, such as the amygdala and hippocampus, which are relevant to seizures and epilepsy. Here we used 2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a potent and selective agonist of kainate receptors that include the GluK1 subunit, in conjunction with mice deficient in GluK1 and GluK2 kainate receptor subunits to assess the role of GluK1 kainate receptors in provoking seizures and in kindling epileptogenesis. We found that systemic ATPA, acting specifically via GluK1 kainate receptors, causes locomotor arrest and forelimb extension (a unique behavioral characteristic of GluK1 …


Role Of Gluk1 Kainate Receptors In Seizures, Epileptic Discharges, And Epileptogenesis, Brita Fritsch, Janine Reis, Maciej Gasior, Rafal M. Kaminski, Michael A. Rogawski Apr 2014

Role Of Gluk1 Kainate Receptors In Seizures, Epileptic Discharges, And Epileptogenesis, Brita Fritsch, Janine Reis, Maciej Gasior, Rafal M. Kaminski, Michael A. Rogawski

Michael A. Rogawski

Kainate receptors containing the GluK1 subunit have an impact on excitatory and inhibitory neurotransmission in brain regions, such as the amygdala and hippocampus, which are relevant to seizures and epilepsy. Here we used 2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a potent and selective agonist of kainate receptors that include the GluK1 subunit, in conjunction with mice deficient in GluK1 and GluK2 kainate receptor subunits to assess the role of GluK1 kainate receptors in provoking seizures and in kindling epileptogenesis. We found that systemic ATPA, acting specifically via GluK1 kainate receptors, causes locomotor arrest and forelimb extension (a unique behavioral characteristic of GluK1 …


Tetramethylenedisulfotetramine, Christopher N. Banks, Dongren Yang, Pamela J. Lein, Michael A. Rogawski Feb 2014

Tetramethylenedisulfotetramine, Christopher N. Banks, Dongren Yang, Pamela J. Lein, Michael A. Rogawski

Michael A. Rogawski

Tetramethylenedisulfotetramine (2,6-dithia-1,3,5,7-tetraazadamantane,2,2,6,6-tetraoxide, TETS) is a highly toxic heteroadamantane rodenticide. It is an odorless, tasteless,white crystalline powder that is slightly soluble in water (0.25 mg ml-1), dimethylsulfoxide and acetone. It was originally synthesized in 1933 as a resinous condensation product of sulfamide and formaldehyde and used commercially in pillows and upholstery as animpregnating stiffening and anti mold agent. However, in 1950, a massive poisoning of German workers in the furniture manufacturing industry was linked to ‘Crinex’ wool, which contained TETS as a by product of processing.