Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Engineering

Articles

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Rapid Inversion: Running Animals And Robots Swing Like A Pendulum Under Ledges, Jean-Michel Mongeau, Brian Mcrae, Ardian Jusufi, Paul Birkmeyer, Aaron M. Hoover, Ronald Fearing, Robert J. Full Jul 2012

Rapid Inversion: Running Animals And Robots Swing Like A Pendulum Under Ledges, Jean-Michel Mongeau, Brian Mcrae, Ardian Jusufi, Paul Birkmeyer, Aaron M. Hoover, Ronald Fearing, Robert J. Full

Aaron M. Hoover

Escaping from predators often demands that animals rapidly negotiate complex environments. The smallest animals attain relatively fast speeds with high frequency leg cycling, wing flapping or body undulations, but absolute speeds are slow compared to larger animals. Instead, small animals benefit from the advantages of enhanced maneuverability in part due to scaling. Here, we report a novel behavior in small, legged runners that may facilitate their escape by disappearance from predators. We video recorded cockroaches and geckos rapidly running up an incline toward a ledge, digitized their motion and created a simple model to generalize the behavior. Both species ran …


Self-Assembling Short Oligopeptides And The Promotion Of Angiogenesis, Alisha Sarang-Sieminski, Daria Narmoneva, Olumuyiwa Oni, Shugang Zhang, Jonathan Gertler, Roger Kamm, Richard Lee Apr 2012

Self-Assembling Short Oligopeptides And The Promotion Of Angiogenesis, Alisha Sarang-Sieminski, Daria Narmoneva, Olumuyiwa Oni, Shugang Zhang, Jonathan Gertler, Roger Kamm, Richard Lee

Alisha L. Sarang-Sieminski

Because an adequate blood supply to and within tissues is an essential factor for successful tissue regeneration, promoting a functional microvasculature is a crucial factor for biomaterials. In this study, we demonstrate that short self-assembling peptides form scaffolds that provide an angiogenic environment promoting long-term cell survival and capillary-like network formation in three-dimensional cultures of human microvascular endothelial cells. Our data show that, in contrast to collagen type I, the peptide scaffold inhibits endothelial cell apoptosis in the absence of added angiogenic factors, accompanied by enhanced gene expression of the angiogenic factor VEGF. In addition, our results suggest that the …


Salmon Fibrin Supports An Increased Number Of Sprouts And Decreased Degradation While Maintaining Sprout Length Relative To Human Fibrin In An In Vitro Angiogenesis Model, Alisha Sarang-Sieminski, Keith Gooch Apr 2012

Salmon Fibrin Supports An Increased Number Of Sprouts And Decreased Degradation While Maintaining Sprout Length Relative To Human Fibrin In An In Vitro Angiogenesis Model, Alisha Sarang-Sieminski, Keith Gooch

Alisha L. Sarang-Sieminski

Salmon-derived fibrin has been proposed as a preferred alternative to human or bovine fibrin because of its reduced potential for disease transmission. Here we evaluate salmon fibrin as an alternative ECM support for therapeutic angiogenesis applications, such as vascularizing engineered tissues. Human umbilical vein endothelial cells (HUVEC) seeded on gelatin beads and suspended in either salmon or human fibrin sprouted and formed capillary-like structures. Sprout length was generally increased with the addition of bFGF and VEGF and further increased with the addition of phorbol myristate acetate (PMA). The number of sprouts per bead was increased 61-188% in salmon fibrin relative …


Ena/Vasp Is Required For Endothelial Barrier Function In Vivo, Craig Furman, Alisha L. Sieminski, Adam V. Kwiatkowski, Douglas A. Rubinson, Eliza Vasile, Roderick T. Bronson, Reinhard Fassler Jun 2011

Ena/Vasp Is Required For Endothelial Barrier Function In Vivo, Craig Furman, Alisha L. Sieminski, Adam V. Kwiatkowski, Douglas A. Rubinson, Eliza Vasile, Roderick T. Bronson, Reinhard Fassler

Alisha L. Sarang-Sieminski

Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell-cell and cell-matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response …