Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Evaluation Of A Modified Monod Model For Predicting Algal Dynamics In Lake Tai, Jian Huang, Qiujin Xu, Xixi Wang, Beidou Xi, Keli Jia, Shouliang Huo, Hongliang Liu, Changyou Li, Bingbing Xu Jan 2015

Evaluation Of A Modified Monod Model For Predicting Algal Dynamics In Lake Tai, Jian Huang, Qiujin Xu, Xixi Wang, Beidou Xi, Keli Jia, Shouliang Huo, Hongliang Liu, Changyou Li, Bingbing Xu

Civil & Environmental Engineering Faculty Publications

Several modified versions of the Monod model have been proposed to simulate algal dynamics in lakes by keeping the parent model's advantages of simplicity and low data requirement. This study evaluated the performance of a widely-used modified Monod model in predicting algal dynamics at various time scales in Lake Tai, a typical shallow lake in east China, using multiple time series. Chlorophyll-a (Chl-a) concentration was used as a surrogate for algal (CyanoHABs: cyanobacterial harmful algal blooms) growth and the independent variables were total nitrogen (TN), total phosphorus (TP), and either water temperature or air temperature. The evaluation indicated that the …


Human Osteoblast Proliferation In Culture Following A Nanosecond Pulsed Electric Field (Nspef), Leonard Joseph Carinci Jr. Apr 2010

Human Osteoblast Proliferation In Culture Following A Nanosecond Pulsed Electric Field (Nspef), Leonard Joseph Carinci Jr.

Biological Sciences Theses & Dissertations

Osteoblasts are mononucleate bone forming cells responsible for the deposition of new bone. Application of mechanical stress on bone reveals its ability to produce and release electric potentials across the cell membrane called piezoelectricity. The electric potentials produced in response to mechanical stress may have a direct correlation on osseous cells and the signaling pathways that regulate proliferation. Nanosecond pulsed electric fields (nsPEFs) are high intensity, ultrashort pulses which have the ability to maintain the integrity of the cell membrane by avoiding traditional electroporation. We delivered 8 nsPEFs (0.5 Hz) of a 25 kV/cm or 35 kV/cm electric field strength …