Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Beyond Zar: The Use And Abuse Of Classification Statistics For Otolith Chemistry, C. M. Jones, M. Palmers, J. J. Schaffler Jan 2017

Beyond Zar: The Use And Abuse Of Classification Statistics For Otolith Chemistry, C. M. Jones, M. Palmers, J. J. Schaffler

OES Faculty Publications

Classification method performance was evaluated using otolith chemistry of juvenile Atlantic menhaden Brevoortia tyrannus when assumptions of data normality were met and were violated. Four methods were tested [linear discriminant function analysis (LDFA), quadratic discriminant function analysis (QDFA), random forest (RF) and artificial neural networks (ANN)] using computer simulation to determine their performance when variable-group means ranged from small to large and their performance under conditions of typical skewness to double the amount of skewness typically observed. Using the kappa index, the parametric methods performed best after applying appropriate data transformation, gaining 2% better performance with LDFA performing slightly better …


Twenty-First Century Climate Change And Submerged Aquatic Vegetation In A Temperate Estuary: The Case Of Chesapeake Bay, Thomas M. Arnold, Richard C. Zimmerman, Katharina A.M. Engelhardt, J. Court Stevenson Jan 2017

Twenty-First Century Climate Change And Submerged Aquatic Vegetation In A Temperate Estuary: The Case Of Chesapeake Bay, Thomas M. Arnold, Richard C. Zimmerman, Katharina A.M. Engelhardt, J. Court Stevenson

OES Faculty Publications

Introduction: The Chesapeake Bay was once renowned for expansive meadows of submerged aquatic vegetation (SAV). However, only 10% of the original meadows survive. Future restoration effortswill be complicated by accelerating climate change, including physiological stressors such as a predicted mean temperature increase of 2-6°C and a 50-160% increase in CO2 concentrations.

Outcomes: As the Chesapeake Bay begins to exhibit characteristics of a subtropical estuary, summer heat waves will become more frequent and severe. Warming alone would eventually eliminate eelgrass (Zostera marina) from the region. It will favor native heat-tolerant species such as widgeon grass (Ruppia maritima) while facilitating colonization by …