Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Determining Domain Similarity And Domain-Protein Similarity Using Functional Similarity Measurements Of Gene Ontology Terms, Lisa Michelle Guntly, Jennifer Leopold, Anne M. Maglia Oct 2007

Determining Domain Similarity And Domain-Protein Similarity Using Functional Similarity Measurements Of Gene Ontology Terms, Lisa Michelle Guntly, Jennifer Leopold, Anne M. Maglia

Computer Science Faculty Research & Creative Works

Protein domains typically correspond to major functional sites of a protein. Therefore, determining similarity between domains can aid in the comparison of protein functions, and can provide a basis for grouping domains based on function. One strategy for comparing domain similarity and domain-protein similarity is to use similarity measurements of annotation terms from the Gene Ontology (GO). In this paper five methods are analyzed in terms of their usefulness for comparing domains, and comparing domains to proteins based on GO terms.


Mad2 And Bubr1 Function In A Single Checkpoint Pathway That Responds To A Loss Of Tension, Katie Shannon, Julie C. Canman, Edward D. Salmon Oct 2002

Mad2 And Bubr1 Function In A Single Checkpoint Pathway That Responds To A Loss Of Tension, Katie Shannon, Julie C. Canman, Edward D. Salmon

Biological Sciences Faculty Research & Creative Works

The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23°C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23°C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37°C. The metaphase delay at 23°C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements …