Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

East Tennessee State University

Bacteriology

Vicibactin

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Chelation Of Metal Ions By Vicibactin, A Siderophore Produced By Rhizobium Leguminosarum Atcc 14479, Joshua Stinnett May 2019

The Chelation Of Metal Ions By Vicibactin, A Siderophore Produced By Rhizobium Leguminosarum Atcc 14479, Joshua Stinnett

Undergraduate Honors Theses

Vicibactin is a small, high-affinity iron chelator produced by Rhizobium leguminosarum ATCC 14479. Previous work has shown that vicibactin is produced and secreted from the cell to sequester ferric iron from the environment during iron-deplete conditions. This ferric iron is then transported into the cell to be converted into ferrous iron. This study uses UV-Vis spectroscopy as well as ion trap-time of flight mass spectroscopy to determine that vicibactin does form a complex with copper(II) ions, however, at a much lower affinity than for iron(III). Stability tests have shown that the copper(II)-vicibactin complex is stable over time. The results of …


Isolation And Identification Of The Siderophore "Vicibactin" Produced By Rhizobium Leguminosarum Atcc 14479., William H. Wright Iv May 2010

Isolation And Identification Of The Siderophore "Vicibactin" Produced By Rhizobium Leguminosarum Atcc 14479., William H. Wright Iv

Electronic Theses and Dissertations

Siderophores are small, iron chelating molecules produced by many bacteria to help meet the iron requirements of the cell. Multiple metabolic functions require iron as it serves as a cofactor in many enzymes and cellular processes. However, in the presence of oxygen and at physiologic pH, iron forms insoluble ferric complexes that cause the nutrient to be unavailable to bacterial cells. Siderophores alleviate this limitation by chelating the ferric iron, rendering it soluble and available for uptake. One group of microorganisms known for their ability to produce siderophores is the rhizobia. These bacteria are characterized both by their formation of …