Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Cosmomvpa: Multi-Modal Multivariate Pattern Analysis Of Neuroimaging Data In Matlab/Gnu Octave, Nikolaas N. Oosterhof, Andrew C. Connolly, James V. Haxby Apr 2016

Cosmomvpa: Multi-Modal Multivariate Pattern Analysis Of Neuroimaging Data In Matlab/Gnu Octave, Nikolaas N. Oosterhof, Andrew C. Connolly, James V. Haxby

Dartmouth Scholarship

Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and …


Algorithms For Optimizing Cross-Overs In Dna Shuffling, Lu He, Alan M. Friedman, Chris Bailey-Kellogg Aug 2012

Algorithms For Optimizing Cross-Overs In Dna Shuffling, Lu He, Alan M. Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

DNA shuffling generates combinatorial libraries of chimeric genes by stochastically recombining parent genes. The resulting libraries are subjected to large-scale genetic selection or screening to identify those chimeras with favorable properties (e.g., enhanced stability or enzymatic activity). While DNA shuffling has been applied quite successfully, it is limited by its homology-dependent, stochastic nature. Consequently, it is used only with parents of sufficient overall sequence identity, and provides no control over the resulting chimeric library.

Results: This paper presents efficient methods to extend the scope of DNA shuffling to handle significantly more diverse parents and to generate more predictable, optimized libraries. …


Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg Nov 2011

Planning Combinatorial Disulfide Cross-Links For Protein Fold Determination, Fei Xiong, Alan M Friedman, Chris Bailey-Kellogg

Dartmouth Scholarship

Fold recognition techniques take advantage of the limited number of overall structural organizations, and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model. While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments.