Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Phylogenetic Analysis Of The Formin Homology 2 Domain, Henry N. Higgs, Kevin J. Peterson Oct 2004

Phylogenetic Analysis Of The Formin Homology 2 Domain, Henry N. Higgs, Kevin J. Peterson

Dartmouth Scholarship

Formin proteins are key regulators of eukaryotic actin filament assembly and elongation, and many species possess multiple formin isoforms. A nomenclature system based on fundamental features would be desirable, to aid the rapid identification and characterization of novel formins. In this article, we attempt to systematize the formin family by performing phylogenetic analyses of the formin homology 2 (FH2) domain, an independently folding region common to all formins, which alone can influence actin dynamics. Through database searches, we identify 101 FH2 domains from 26 eukaryotic species, including 15 in mice. Sequence alignments reveal a highly conserved yeast-specific insert in the …


Pf15p Is The Chlamydomonas Homologue Of The Katanin P80 Subunit And Is Required For Assembly Of Flagellar Central Microtubules, Erin E. Dymek, Paul A. Lefebvre, Elizabeth F. Smith Aug 2004

Pf15p Is The Chlamydomonas Homologue Of The Katanin P80 Subunit And Is Required For Assembly Of Flagellar Central Microtubules, Erin E. Dymek, Paul A. Lefebvre, Elizabeth F. Smith

Dartmouth Scholarship

Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete …


Estimating Metazoan Divergence Times With A Molecular Clock, Kevin J. Peterson, Jessica B. Lyons, Kristin S. Nowak, Carter M. Takacs, Matthew J. Wargo, Mark A. Mcpeek Apr 2004

Estimating Metazoan Divergence Times With A Molecular Clock, Kevin J. Peterson, Jessica B. Lyons, Kristin S. Nowak, Carter M. Takacs, Matthew J. Wargo, Mark A. Mcpeek

Dartmouth Scholarship

Accurately dating when the first bilaterally symmetrical animals arose is crucial to our understanding of early animal evolution. The earliest unequivocally bilaterian fossils are 555 million years old. In contrast, molecular-clock analyses calibrated by using the fossil record of vertebrates estimate that vertebrates split from dipterans (Drosophila) 900 million years ago (Ma). Nonetheless, comparative genomic analyses suggest that a significant rate difference exists between vertebrates and dipterans, because the percentage difference between the genomes of mosquito and fly is greater than between fish and mouse, even though the vertebrate divergence is almost twice that of the dipteran. Here we show …