Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor Mar 2003

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor

Dartmouth Scholarship

Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient …


Hierarchy Of Protein Assembly At The Vertex Ring Domain For Yeast Vacuole Docking And Fusion, Li Wang, Alexey J. Merz, Kevin M. Collins, William Wickner Feb 2003

Hierarchy Of Protein Assembly At The Vertex Ring Domain For Yeast Vacuole Docking And Fusion, Li Wang, Alexey J. Merz, Kevin M. Collins, William Wickner

Dartmouth Scholarship

Vacuole tethering, docking, and fusion proteins assemble into a “vertex ring” around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each other’s vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that …