Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Life Sciences

Calcium-Mediated Actin Reset (Caar) Mediates Acute Cell Adaptations, Pauline Wales, Christian Schuberth, Roland Aufschnaiter, Johannes Fels, Ireth Garcia-Aguilar, Annette Janning, Christopher D. Dlugos, Marco Schaefer-Herte, Christoph Klingner, Mike Waelte, Julian Kuhlmann, Ekaterina Menis, Hockaday Kang Hockaday Kang, Kerstin C. Maier, Wenya Hou, Antonella Russo, Henry N. Higgs Dec 2016

Calcium-Mediated Actin Reset (Caar) Mediates Acute Cell Adaptations, Pauline Wales, Christian Schuberth, Roland Aufschnaiter, Johannes Fels, Ireth Garcia-Aguilar, Annette Janning, Christopher D. Dlugos, Marco Schaefer-Herte, Christoph Klingner, Mike Waelte, Julian Kuhlmann, Ekaterina Menis, Hockaday Kang Hockaday Kang, Kerstin C. Maier, Wenya Hou, Antonella Russo, Henry N. Higgs

Dartmouth Scholarship

Actin has well established functions in cellular morphogenesis. However, it is not well understood how the various actin assemblies in a cell are kept in a dynamic equilibrium, in particular when cells have to respond to acute signals. Here, we characterize a rapid and transient actin reset in response to increased intracellular calcium levels. Within seconds of calcium influx, the formin INF2 stimulates filament polymerization at the endoplasmic reticulum (ER), while cortical actin is disassembled. The reaction is then reversed within a few minutes. This Calcium-mediated actin reset (CaAR) occurs in a wide range of mammalian cell types and in …


The Formin Fmnl3 Assembles Plasma Membrane Protrusions That Participate In Cell–Cell Adhesion, Timothy J. Gauvin, Lorna E. Young, Henry N. Higgs Nov 2014

The Formin Fmnl3 Assembles Plasma Membrane Protrusions That Participate In Cell–Cell Adhesion, Timothy J. Gauvin, Lorna E. Young, Henry N. Higgs

Dartmouth Scholarship

FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of …


An Expanded View Of The Eukaryotic Cytoskeleton, James B. Moseley Oct 2013

An Expanded View Of The Eukaryotic Cytoskeleton, James B. Moseley

Dartmouth Scholarship

A rich and ongoing history of cell biology research has defined the major polymer systems of the eukaryotic cytoskeleton. Recent studies have identified additional proteins that form filamentous structures in cells and can self-assemble into linear polymers when purified. This suggests that the eukaryotic cytoskeleton is an even more complex system than previously considered. In this essay, I examine the case for an expanded definition of the eukaryotic cytoskeleton and present a series of challenges for future work in this area.


Axl2 Integrates Polarity Establishment, Maintenance, And Environmental Stress Response In The Filamentous Fungus Ashbya Gossypii, Jonathan F. Anker, Amy S. Gladfelter Oct 2011

Axl2 Integrates Polarity Establishment, Maintenance, And Environmental Stress Response In The Filamentous Fungus Ashbya Gossypii, Jonathan F. Anker, Amy S. Gladfelter

Dartmouth Scholarship

In budding yeast, new sites of polarity are chosen with each cell cycle and polarization is transient. In filamentous fungi, sites of polarity persist for extended periods of growth and new polarity sites can be established while existing sites are maintained. How the polarity establishment machinery functions in these distinct growth forms found in fungi is still not well understood. We have examined the function of Axl2, a transmembrane bud site selection protein discovered in Saccharomyces cerevisiae, in the filamentous fungus Ashbya gossypii. A. gossypii does not divide by budding and instead exhibits persistent highly polarized growth, and multiple axes …


Differential Interactions Of The Formins Inf2, Mdia1, And Mdia2 With Microtubules, Jeremie Gaillard, Bvinay Ramabhadran, Emmanuelle Neumanne, Pinar Gurel, Laurent Blanchoin, Marylin Vantard, Henry N. Higgs Sep 2011

Differential Interactions Of The Formins Inf2, Mdia1, And Mdia2 With Microtubules, Jeremie Gaillard, Bvinay Ramabhadran, Emmanuelle Neumanne, Pinar Gurel, Laurent Blanchoin, Marylin Vantard, Henry N. Higgs

Dartmouth Scholarship

A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements.


Crystal Structure Of A Charge Engineered Human Lysozyme Having Enhanced Bactericidal Activity, Avinash Gill, Thomas C. Scanlon, Daniel C. Osipovitch, Dean R. Madden, Karl E. Griswold Mar 2011

Crystal Structure Of A Charge Engineered Human Lysozyme Having Enhanced Bactericidal Activity, Avinash Gill, Thomas C. Scanlon, Daniel C. Osipovitch, Dean R. Madden, Karl E. Griswold

Dartmouth Scholarship

Human lysozyme is a key component of the innate immune system, and recombinant forms of the enzyme represent promising leads in the search for therapeutic agents able to treat drug-resistant infections. The wild type protein, however, fails to participate effectively in clearance of certain infections due to inherent functional limitations. For example, wild type lysozymes are subject to electrostatic sequestration and inactivation by anionic biopolymers in the infected airway. A charge engineered variant of human lysozyme has recently been shown to possess improved antibacterial activity in the presence of disease associated inhibitory molecules. Here, the 2.04 A ̊ crystal structure …


Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An Jun 2009

Disruption Of Osysl15 Leads To Iron Inefficiency In Rice Plants, Sichul Lee, Jeff C. Chiecko, Sun A. Kim, Elsbeth L. Walker, Youngsook Lee, Mary Lou Guerinot, Gyhheung An

Dartmouth Scholarship

Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe3+; these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to β-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green …


Long-Distance Delivery Of Bacterial Virulence Factors By Pseudomonas Aeruginosa Outer Membrane Vesicles, Jennifer M. Bomberger, Daniel P. Maceachran, Bonita A. Coutermarsh, Siying Ye, George A. O'Toole, Bruce A. Stanton, Frederick M. Ausubel Apr 2009

Long-Distance Delivery Of Bacterial Virulence Factors By Pseudomonas Aeruginosa Outer Membrane Vesicles, Jennifer M. Bomberger, Daniel P. Maceachran, Bonita A. Coutermarsh, Siying Ye, George A. O'Toole, Bruce A. Stanton, Frederick M. Ausubel

Dartmouth Scholarship

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including β-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma …


Regulation Of Distinct Septin Rings In A Single Cell By Elm1p And Gin4p Kinases, Bradley S. Demay, Rebecca A. Meseroll, Patricia Occhipinti, Amy S. Gladfelter Feb 2009

Regulation Of Distinct Septin Rings In A Single Cell By Elm1p And Gin4p Kinases, Bradley S. Demay, Rebecca A. Meseroll, Patricia Occhipinti, Amy S. Gladfelter

Dartmouth Scholarship

Septins are conserved, GTP-binding proteins that assemble into higher order structures, including filaments and rings with varied cellular functions. Using four-dimensional quantitative fluorescence microscopy of Ashbya gossypii fungal cells, we show that septins can assemble into morphologically distinct classes of rings that vary in dimensions, intensities, and positions within a single cell. Notably, these different classes coexist and persist for extended times, similar in appearance and behavior to septins in mammalian neurons and cultured cells. We demonstrate that new septin proteins can add through time to assembled rings, indicating that septins may continue to polymerize during ring maturation. Different classes …


Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom Oct 2007

Role Of Actin Cytoskeletal Dynamics In Activation Of The Cyclic Amp Pathway And Hwp1 Gene Expression In Candida Albicans, Michael J. Wolyniak, Paula Sundstrom

Dartmouth Scholarship

Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 …


Hierarchy Of Protein Assembly At The Vertex Ring Domain For Yeast Vacuole Docking And Fusion, Li Wang, Alexey J. Merz, Kevin M. Collins, William Wickner Feb 2003

Hierarchy Of Protein Assembly At The Vertex Ring Domain For Yeast Vacuole Docking And Fusion, Li Wang, Alexey J. Merz, Kevin M. Collins, William Wickner

Dartmouth Scholarship

Vacuole tethering, docking, and fusion proteins assemble into a “vertex ring” around the apposed membranes of tethered vacuoles before catalyzing fusion. Inhibitors of the fusion reaction selectively interrupt protein assembly into the vertex ring, establishing a causal assembly hierarchy: (a) The Rab GTPase Ypt7p mediates vacuole tethering and forms the initial vertex ring, independent of t-SNAREs or actin; (b) F-actin disassembly and GTP-bound Ypt7p direct the localization of other fusion factors; (c) The t-SNAREs Vam3p and Vam7p regulate each other’s vertex enrichment, but do not affect Ypt7p localization. The v-SNARE Vti1p is enriched at vertices by a distinct pathway that …


The Leukemic Protein Core Binding Factor Beta (Cbfbeta)-Smooth-Muscle Myosin Heavy Chain Sequesters Cbfalpha2 Into Cytoskeletal Filaments And Aggregates, Neeraj Adya, Terryl Stacy, Nancy A. Speck, Pu Paul Liu Dec 1998

The Leukemic Protein Core Binding Factor Beta (Cbfbeta)-Smooth-Muscle Myosin Heavy Chain Sequesters Cbfalpha2 Into Cytoskeletal Filaments And Aggregates, Neeraj Adya, Terryl Stacy, Nancy A. Speck, Pu Paul Liu

Dartmouth Scholarship

The fusion gene CBFB-MYH11 is generated by the chromosome 16 inversion associated with acute myeloid leukemias. This gene encodes a chimeric protein involving the core binding factor β (CBFβ) and the smooth-muscle myosin heavy chain (SMMHC). Mouse model studies suggest that this chimeric protein CBFβ-SMMHC dominantly suppresses the function of CBF, a heterodimeric transcription factor composed of DNA binding subunits (CBFα1 to 3) and a non-DNA binding subunit (CBFβ). This dominant suppression results in the blockage of hematopoiesis in mice and presumably contributes to leukemogenesis. We used transient-transfection assays, in combination with immunofluorescence and green fluorescent protein-tagged proteins, to monitor …