Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Examining Transcriptional Regulators During Muscle Development In Drosophila Melanogaster, Chaamy Yapa May 2023

Examining Transcriptional Regulators During Muscle Development In Drosophila Melanogaster, Chaamy Yapa

Student Theses and Dissertations

In Drosophila melanogaster embryos, a distinct approach to study the transcriptional regulation is to examine the larval somatic muscle development. Transcription factors are essential regulatory proteins that help to control gene expression and respond to signaling pathways and various cues. Today, there are at least twenty transcription factors that have been discovered to contribute to the development of the 30 distinct larval somatic muscles in each abdominal hemisegment of Drosophila melanogaster. Several studies have already been conducted on muscle regulatory transcription factors including midline and apterous. These transcription factors were shown to control the development of muscles through mutant …


The Effects Of Glycolytic Mutations In Drosophila Melanogaster Muscle Development, Coco Lim May 2023

The Effects Of Glycolytic Mutations In Drosophila Melanogaster Muscle Development, Coco Lim

Student Theses and Dissertations

Muscle atrophy, or muscle wasting, is caused due to lack of physical activity for an extended period of time, due to muscle diseases (such as muscle dystrophies), cancer chemotherapies, and aging. It is also extensively found on astronauts after spaceflight, particularly missions of long durations. Muscle cells are dependent on different metabolic pathways to optimize Adenosine triphosphate (ATP) production to compensate for muscle exertion. Glycolysis converts glucose into ATP producing pyruvate, which can be sent into the citric acid cycle or converted to lactate (lactic acid). Muscles preferentially use lactate production, despite the fact that fewer molecules of ATP are …


Examining The Roles Of Genetic And Environmental Factors In Drosophila Melanogaster Hematopoiesis And Innate Immune System, Minkyung Lee May 2018

Examining The Roles Of Genetic And Environmental Factors In Drosophila Melanogaster Hematopoiesis And Innate Immune System, Minkyung Lee

Student Theses and Dissertations

Nearly 24 million people are affected by autoimmune diseases in the United States. Main causes of autoimmune diseases have been attributed to genetic predisposition and environmental exposure to chemicals such as hormones and pesticides. Due to the large population that are affected by autoimmune diseases, it is critical to understand the mechanisms behind them. In this study, we sought to explore both genetic and environmental factors that affect hematopoiesis, or the formation of specific blood cells, and immune system in Drosophila melanogaster. As Drosophila melanogaster have conserved pathways of hematopoiesis as humans, they were used as the model organism …


Genetic Basis Of Larval Crystal Cell Quantity Variation In The Drosophila Genetic Reference Panel (Dgrp), Brian Tang Apr 2018

Genetic Basis Of Larval Crystal Cell Quantity Variation In The Drosophila Genetic Reference Panel (Dgrp), Brian Tang

Student Theses and Dissertations

Crystal cells are one of three requisite hemocytes that take part in fighting infection and wound healing in Drosophila melanogaster (common fruit flies). The developmental genetics of crystal cell formation is only beginning to be discovered. To address this question, we performed a Genome-Wide Association Study (GWAS) on larval crystal cell number from 78 isolines of the Drosophila Genetic Reference Panel (DGRP) collection. The DGRP consists of naturally caught fruit flies that are inbred to near homozygosity with completely sequenced genomes. By placing the wandering third instar larvae under heatshock, a process that induces the melanization of crystal cells, …