Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Studying The Mechanisms Of Developmental Vocal Learning And Adult Vocal Performance In Zebra Finches Through Lentiviral Injection, Zhimin Shi, Ofer Tchernichovski, Xiaoching Li Sep 2017

Studying The Mechanisms Of Developmental Vocal Learning And Adult Vocal Performance In Zebra Finches Through Lentiviral Injection, Zhimin Shi, Ofer Tchernichovski, Xiaoching Li

Publications and Research

Here we provide a detailed step-by-step protocol for using lentivirus to manipulate miRNA expression in Area X of juvenile zebra finches and for analyzing the consequences on song learning and song performance. This protocol has four parts: 1) making the lentiviral construct to overexpress miRNA miR-9; 2) packaging the lentiviral vector; 3) stereotaxic injection of the lentivirus into Area X of juvenile zebra finches; 4) analysis of song learning and song performance in juvenile and adult zebra finches. These methods complement the methods employed in recent works that showed changing FoxP2 gene expression in Area X with lentivirus or adeno-associated …


Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian Jan 2017

Rules And Mechanisms For Efficient Two-Stage Learning In Neural Circuits, Tiberiu Teşileanu, Bence Ölveczky, Vijay Balasubramanian

Publications and Research

Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching …