Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

An Upper Limit For Macromolecular Crowding Effects, Andrew C. Miklos, Congang Li, Courtney D. Sorell, L. Andrew Lyon, Gary J. Pielak Jan 2011

An Upper Limit For Macromolecular Crowding Effects, Andrew C. Miklos, Congang Li, Courtney D. Sorell, L. Andrew Lyon, Gary J. Pielak

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Background: Solutions containing high macromolecule concentrations are predicted to affect a number of protein properties compared to those properties in dilute solution. In cells, these macromolecular crowders have a large range of sizes and can occupy 30% or more of the available volume. We chose to study the stability and ps-ns internal dynamics of a globular protein whose radius is similar to 2 nm when crowded by a synthetic microgel composed of poly(N-isopropylacrylamide-co-acrylic acid) with particle radii of similar to 300 nm.

Results: Our studies revealed no change in protein rotational or ps-ns backbone dynamics and only mild …


Dynamic Light Scattering And Zeta Potential Of Colloidal Mixtures Of Amelogenin And Hydroxyapatite In Calcium And Phosphate Rich Ionic Milieus, Vuk Uskoković, Roselyn Odsinada, Sonia Djordjevic, Stefan Habelitz Jan 2011

Dynamic Light Scattering And Zeta Potential Of Colloidal Mixtures Of Amelogenin And Hydroxyapatite In Calcium And Phosphate Rich Ionic Milieus, Vuk Uskoković, Roselyn Odsinada, Sonia Djordjevic, Stefan Habelitz

Pharmacy Faculty Articles and Research

The concept of zeta-potential has been used for more than a century as a basic parameter in controlling the stability of colloidal suspensions, irrespective of the nature of their particulate ingredients – organic or inorganic. There are prospects that self-assembly of peptide species and the protein-mineral interactions related to biomineralization may be controlled using this fundamental physicochemical parameter. In this study, we have analyzed the particle size and zeta-potential of the full-length recombinant human amelogenin (rH174), the main protein of the developing enamel matrix, in the presence of calcium and phosphate ions and hydroxyapatite (HAP) particles. As calcium and phosphate …