Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Life Sciences

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun Nov 2009

Ceramide Kinase Regulates Phospholipase C And Phosphatidylinositol 4, 5, Bisphosphate In Phototransduction, Ujjaini Dasgupta, Takeshi Bamba, Salvatore Chiantia, Pusha Karim, Ahmad N. Abou Tayoun

Dartmouth Scholarship

Phosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction. The mutant photoreceptors also undergo activity-dependent degeneration. Furthermore, we show that a significant increase in ceramide, resulting from lack of ceramide kinase, perturbs the membrane microenvironment of …


A Functional Role For The Ventrolateral Prefrontal Cortex In Non-Spatial Auditory Cognition, Y. E. Cohen, B. E. Russ, S. J. Davis, A. E. Baker, A. L. Ackelson, R. Niteck Nov 2009

A Functional Role For The Ventrolateral Prefrontal Cortex In Non-Spatial Auditory Cognition, Y. E. Cohen, B. E. Russ, S. J. Davis, A. E. Baker, A. L. Ackelson, R. Niteck

Dartmouth Scholarship

Spatial and non-spatial sensory information is hypothesized to be evaluated in parallel pathways. In this study, we tested the spatial and non-spatial sensitivity of auditory neurons in the ventrolateral prefrontal cortex (vPFC), a cortical area in the non-spatial pathway. Activity was tested while non-human primates reported changes in an auditory stimulus' spatial or non-spatial features. We found that vPFC neurons were reliably modulated during a non-spatial auditory task but were not modulated during a spatial auditory task. The degree of modulation during the non-spatial task correlated positively with the monkeys' behavioral performance. These results are consistent with the hypotheses that …


Decreased Replication Origin Activity In Temporal Transition Regions, Zeqiang Guan, Christina M. Hughes, Settapong Kosiyatrakul, Paolo Norio, Ranjan Sen, Steven Fiering Nov 2009

Decreased Replication Origin Activity In Temporal Transition Regions, Zeqiang Guan, Christina M. Hughes, Settapong Kosiyatrakul, Paolo Norio, Ranjan Sen, Steven Fiering

Dartmouth Scholarship

In the mammalian genome, early- and late-replicating domains are often separated by temporal transition regions (TTRs) with novel properties and unknown functions. We identified a TTR in the mouse immunoglobulin heavy chain (Igh) locus, which contains replication origins that are silent in embryonic stem cells but activated during B cell development. To investigate which factors contribute to origin activation during B cell development, we systematically modified the genetic and epigenetic status of the endogenous Igh TTR and used a single-molecule approach to analyze DNA replication. Introduction of a transcription unit into the Igh TTR, activation of gene transcription, …


Characterization Of Two Outer Membrane Proteins, Flgo And Flgp, That Influence Vibrio Cholerae Motility, Raquel M. Martinez, Madushini N. Dharmasena, Thomas J. Kirn, Ronald K. Taylor Sep 2009

Characterization Of Two Outer Membrane Proteins, Flgo And Flgp, That Influence Vibrio Cholerae Motility, Raquel M. Martinez, Madushini N. Dharmasena, Thomas J. Kirn, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is highly motile by the action of a single polar flagellum. The loss of motility reduces the infectivity of V. cholerae, demonstrating that motility is an important virulence factor. FlrC is the sigma-54-dependent positive regulator of flagellar genes. Recently, the genes VC2206 (flgP) and VC2207 (flgO) were identified as being regulated by FlrC via a microarray analysis of an flrC mutant (D. C. Morris, F. Peng, J. R. Barker, and K. E. Klose, J. Bacteriol. 190:231-239, 2008). FlgP is reported to be an outer membrane lipoprotein required for motility that functions as a colonization factor. The study reported …


Mtorc1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis Via Increased Hexokinase Ii And Glut1 Expression, Sustained Mcl-1 Expression, And Glycogen Synthase Kinase 3Β Inhibition, Prashanth T. Bhaskar, Veronique Nogueira, Krushna C. Patra, Sang-Min Jeon, Youngkyu Park, R. Brooks Robey, Nissim Hay Sep 2009

Mtorc1 Hyperactivity Inhibits Serum Deprivation-Induced Apoptosis Via Increased Hexokinase Ii And Glut1 Expression, Sustained Mcl-1 Expression, And Glycogen Synthase Kinase 3Β Inhibition, Prashanth T. Bhaskar, Veronique Nogueira, Krushna C. Patra, Sang-Min Jeon, Youngkyu Park, R. Brooks Robey, Nissim Hay

Dartmouth Scholarship

The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1. mTORC1-mediated increase in hypoxia-inducible factor 1α (HIF1α) abundance, which occurs in the absence of serum in normoxic Tsc2-deficient cells, contributes to these changes. Increased HIF1α abundance in these cells is attributed to both …


Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek Aug 2009

Manipulating Testosterone To Assess Links Between Behavior, Morphology, And Performance In The Brown Anole Anolis Sagrei, Robert M. Cox, Derek S. Stenquist, Justin P. Henningsen, Ryan Calsbeek

Dartmouth Scholarship

Survival and reproductive success are determined by the complex interplay between behavior, physiology, morphology, and performance. When optimal trait combinations along these various phenotypic axes differ between sexes or across seasons, regulatory mechanisms such as sex steroids can often facilitate sex‐specific and/or seasonal trait expression. In this study, we used surgical castration and replacement of exogenous testosterone in adult male brown anoles (Anolis sagrei) to simultaneously examine the effects of testosterone on a suite of morphological (dewlap area, body size), physiological (immune function), behavioral (dewlap, head bob, and push‐up displays), and performance (stamina, sprint speed, bite force) traits. …


Insulin Stimulates The Phosphorylation Of The Exocyst Protein Sec8 In Adipocytes, Patrick D. Lyons, Grantley R. Peck, Arminja N. Kettenbach, Scott A. Gerber, Liya Roudaia, Gustav E. Lienhard Aug 2009

Insulin Stimulates The Phosphorylation Of The Exocyst Protein Sec8 In Adipocytes, Patrick D. Lyons, Grantley R. Peck, Arminja N. Kettenbach, Scott A. Gerber, Liya Roudaia, Gustav E. Lienhard

Dartmouth Scholarship

The signal transduction pathway leading from the insulin receptor to stimulate the fusion of vesicles containing the glucose transporter GLUT4 with the plasma membrane in adipocytes and muscle cells is not completely understood. Current evidence suggests that in addition to the Rab GTPase-activating protein AS160, at least one other substrate of Akt (also called protein kinase B), which is as yet unidentified, is required. Sec8 is a component of the exocyst complex that has been previously implicated in GLUT4 trafficking. In the present study, we report that insulin stimulates the phosphorylation of Sec8 on Ser-32 in 3T3-L1 adipocytes. On the …


Chronic Exposure To Arsenic In The Drinking Water Alters The Expression Of Immune Response Genes In Mouse Lung, Courtney D. Kozul, Thomas H. Hampton, Jennifer C. Davey, Julie A. Gosse, Athena P. Nomikos, Phillip L. Eisenhauer, Daniel J. Weiss, Jessica E. Thorpe, Michael A. Ihnat, Joshua W. Hamilton Jul 2009

Chronic Exposure To Arsenic In The Drinking Water Alters The Expression Of Immune Response Genes In Mouse Lung, Courtney D. Kozul, Thomas H. Hampton, Jennifer C. Davey, Julie A. Gosse, Athena P. Nomikos, Phillip L. Eisenhauer, Daniel J. Weiss, Jessica E. Thorpe, Michael A. Ihnat, Joshua W. Hamilton

Dartmouth Scholarship

Background:

Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion.

Objectives:

The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of …


Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy May 2009

Minimum Criteria For Dna Damage-Induced Phase Advances In Circadian Rhythms, Christian I. Hong, Judit Zámborszky, Attila Csikász-Nagy

Dartmouth Scholarship

Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle …


The C. Elegans Snail Homolog Ces-1 Can Activate Gene Expression In Vivo And Share Targets With Bhlh Transcription Factors, John S. Reece-Hoyes, Bart Deplancke, M. Inmaculada Barrasa, Julia Hatzold, Ryan B. Smit, H Efsun Arda, Patricia A. Pope, Jeb Gaudet, Barbara Conradt, Albertga J.M. Walhout Apr 2009

The C. Elegans Snail Homolog Ces-1 Can Activate Gene Expression In Vivo And Share Targets With Bhlh Transcription Factors, John S. Reece-Hoyes, Bart Deplancke, M. Inmaculada Barrasa, Julia Hatzold, Ryan B. Smit, H Efsun Arda, Patricia A. Pope, Jeb Gaudet, Barbara Conradt, Albertga J.M. Walhout

Dartmouth Scholarship

Snail-type transcription factors (TFs) are found in numerous metazoan organisms and function in a plethora of cellular and developmental processes including mesoderm and neuronal development, apoptosis and cancer. So far, Snail-type TFs are exclusively known as transcriptional repressors. They repress gene expression by recruiting transcriptional co-repressors and/or by preventing DNA binding of activators from the basic helix-loop-helix (bHLH) family of TFs to CAGGTG E-box sequences. Here we report that the Caenorhabditis elegans Snail-type TF CES-1 can activate transcription in vivo. Moreover, we provide results that suggest that CES-1 can share its binding site with bHLH TFs, in different tissues, …


Microsaccade Rate Varies With Subjective Visibility During Motion-Induced Blindness, Po-Jang Hsieh, Peter U. Tse Apr 2009

Microsaccade Rate Varies With Subjective Visibility During Motion-Induced Blindness, Po-Jang Hsieh, Peter U. Tse

Dartmouth Scholarship

Motion-induced blindness (MIB) occurs when a dot embedded in a motion field subjectively vanishes. Here we report the first psychophysical data concerning effects of microsaccade/eyeblink rate upon perceptual switches during MIB. We find that the rate of microsaccades/eyeblink rises before and after perceptual transitions from not seeing to seeing the dot, and decreases before perceptual transitions from seeing it to not seeing it. In addition, event-related fMRI data reveal that, when a dot subjectively reappears during MIB, the blood oxygen-level dependent (BOLD) signal increases in V1v and V2v and decreases in contralateral hMT+. These BOLD signal changes observed upon perceptual …


Efficient Gene Replacements In Toxoplasma Gondii Strains Deficient For Nonhomologous End Joining, Barbara A. Fox, Jessica G. Ristuccia, Jason P. Gigley, David J. Bzik Feb 2009

Efficient Gene Replacements In Toxoplasma Gondii Strains Deficient For Nonhomologous End Joining, Barbara A. Fox, Jessica G. Ristuccia, Jason P. Gigley, David J. Bzik

Dartmouth Scholarship

A high frequency of nonhomologous recombination has hampered gene targeting approaches in the model apicomplexan parasite Toxoplasma gondii. To address whether the nonhomologous end-joining (NHEJ) DNA repair pathway could be disrupted in this obligate intracellular parasite, putative KU proteins were identified and a predicted KU80 gene was deleted. The efficiency of gene targeting via double-crossover homologous recombination at several genetic loci was found to be greater than 97% of the total transformants in KU80 knockouts. Gene replacement efficiency was markedly increased (300- to 400-fold) in KU80 knockouts compared to wild-type strains. Target DNA flanks of only approximately 500 bp were …


Accumulation Of Rhodopsin In Late Endosomes Triggers Photoreceptor Cell Degeneration, Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph, Norbert Perrimon Feb 2009

Accumulation Of Rhodopsin In Late Endosomes Triggers Photoreceptor Cell Degeneration, Yashodhan Chinchore, Amitavo Mitra, Patrick J. Dolph, Norbert Perrimon

Dartmouth Scholarship

Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates …