Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Characterization And Functional Regulation Of Bioactive Peptides In Avian Macrophages And Heterophils, Lakshmi Kannan Dec 2009

Characterization And Functional Regulation Of Bioactive Peptides In Avian Macrophages And Heterophils, Lakshmi Kannan

Graduate Theses and Dissertations

Oligopeptides and low molecular weight polypeptides play central roles as effectors and signal transducers acting as hormones, neurotransmitters, growth factors, toxins, and antimicrobial factors that are important for the survival of the organism. Owing to the ubiquitous involvement of peptides in many key regulatory processes, we have been interested to identify native peptides in different cells and tissues and understand their functions. To conduct our studies, we used avian macrophages and heterophils as models of specialized cells which constitute central components of innate immunity. These studies involved (a) qualitative identification and characterization of the peptides associated with high intensity mass …


Novel Cinchona Alkoloid Derived Ammonium Salts As Phase-Transfer Catalysts For The Asymmetric Synthesis Of Beta-Hydroxy Alpha-Amino Acids Via Aldol Reactions And Total Synthesis Of Celogentin C., Bing Ma Jun 2009

Novel Cinchona Alkoloid Derived Ammonium Salts As Phase-Transfer Catalysts For The Asymmetric Synthesis Of Beta-Hydroxy Alpha-Amino Acids Via Aldol Reactions And Total Synthesis Of Celogentin C., Bing Ma

Theses and Dissertations

Project I. Cinchona alkaloid-derived quaternary ammonium salts have been successfully used as phase-transfer catalysts, particularly in asymmetric alkylations. Our group applied this type of catalyst in the synthesis of β-hydroxy α-amino acids via aldol reactions and discovered that the Park-Jew catalyst afforded good yields and good enantiomeric excess of the syn diasteromers, but negligible diastereoselectivity. This project was therefore focused on the synthesis of novel cinchonidine-derived catalysts with the Park-Jew catalyst as the lead structure. The C3 position of cinchonidine nucleus was modified to achieve dimers and catalysts possessing electron-deficient alkyne and alkene moieties. Synthesized catalysts were tested in the …