Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Protein Kinase D Is A Positive Regulator Of Bit1 Apoptotic Function, Hector Biliran, Y. Jan, R. Chen, E. Ruoslahti Oct 2008

Protein Kinase D Is A Positive Regulator Of Bit1 Apoptotic Function, Hector Biliran, Y. Jan, R. Chen, E. Ruoslahti

Faculty and Staff Publications

Bit1 (Bcl-2 inhibitor of transcription) is a mitochondrial protein that induces caspase-independent apoptosis upon its release into the cytoplasm. Bit1 is primarily associated with anoikis (cell death induced by detachment from the extracellular matrix), because the apoptotic function of Bit1 is inhibited by integrin-mediated cell attachment but not by many other antiapoptotic treatments. Here, we show that protein kinase D (PKD) regulates Bit1 apoptotic function. Overexpression of constitutively active PKD or PKD activation by treatment with phorbol 12-myristate 13-acetate results in phosphorylation of two serine residues (Ser5 and Ser87) in a form of Bit1 that is confined to the cytoplasm …


Supervillin Modulation Of Focal Adhesions Involving Trip6/Zrp-1, Norio Takizawa, Tara C. Smith, Thomas Nebl, Jessica Lynn Crowley, Stephen J. Palmieri, Lawrence M. Lifshitz, Anka G. Ehrhardt, Laura M. Hoffman, Mary C. Beckerle, Elizabeth J. Luna Mar 2008

Supervillin Modulation Of Focal Adhesions Involving Trip6/Zrp-1, Norio Takizawa, Tara C. Smith, Thomas Nebl, Jessica Lynn Crowley, Stephen J. Palmieri, Lawrence M. Lifshitz, Anka G. Ehrhardt, Laura M. Hoffman, Mary C. Beckerle, Elizabeth J. Luna

Elizabeth J. Luna

Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress …


Archvillin, A Muscle-Specific Isoform Of Supervillin, Is An Early Expressed Component Of The Costameric Membrane Skeleton, Sang W. Oh, Robert K. Pope, Kelly P. Smith, Jessica Lynn Crowley, Thomas Nebl, Jeanne B. Lawrence, Elizabeth J. Luna Mar 2008

Archvillin, A Muscle-Specific Isoform Of Supervillin, Is An Early Expressed Component Of The Costameric Membrane Skeleton, Sang W. Oh, Robert K. Pope, Kelly P. Smith, Jessica Lynn Crowley, Thomas Nebl, Jeanne B. Lawrence, Elizabeth J. Luna

Elizabeth J. Luna

The membrane skeleton protein supervillin binds tightly to both F-actin and membranes and can potentiate androgen receptor activity in non-muscle cells. We report that muscle, which constitutes the principal tissue source for supervillin sequences, contains a approximately 250 kDa isoform of supervillin that localizes within nuclei and with dystrophin at costameres, regions of F-actin membrane attachment in skeletal muscle. The gene encoding this protein, 'archvillin' (Latin, archi; Greek, archos; 'principal' or 'chief'), contains an evolutionarily conserved, muscle-specific 5' leader sequence. Archvillin cDNAs also contain four exons that encode approximately 47 kDa of additional muscle-specific protein sequence in the form of …


Aging Predisposes Oocytes To Meiotic Nondisjunction When The Cohesin Subunit Smc1 Is Reduced, Vijayalakshmi V. Subramanian, Sharon E. Bickel Jan 2008

Aging Predisposes Oocytes To Meiotic Nondisjunction When The Cohesin Subunit Smc1 Is Reduced, Vijayalakshmi V. Subramanian, Sharon E. Bickel

Dartmouth Scholarship

In humans, meiotic chromosome segregation errors increase dramatically as women age, but the molecular defects responsible are largely unknown. Cohesion along the arms of meiotic sister chromatids provides an evolutionarily conserved mechanism to keep recombinant chromosomes associated until anaphase I. One attractive hypothesis to explain age- dependent nondisjunction (NDJ) is that loss of cohesion over time causes recombinant homologues to dissociate prematurely and segregate randomly during the first meiotic division. Using Drosophila as a model system, we have tested this hypothesis and observe a significant increase in meiosis I NDJ in experimentally aged Drosophila oocytes when the cohesin protein SMC1 …