Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

101 Ways To Try To Grow Arabidopsis: What Light Intensity Worked Best In This Study? Can High Intensity Discharge Lights Be Used?, Robert Eddy, Daniel T. Hahn, Laura Aschenbeck Oct 2008

101 Ways To Try To Grow Arabidopsis: What Light Intensity Worked Best In This Study? Can High Intensity Discharge Lights Be Used?, Robert Eddy, Daniel T. Hahn, Laura Aschenbeck

Purdue Methods for Arabidopsis Growth

This document is one entry in a series of questions and answers originally posted to the Purdue University Department of Horticulture & Landscape Architecture’s Plant Growth Facility Web site [http://www.hort.purdue.edu/hort/facilities/greenhouse/101exp.shtml] regarding best practices for Arabidopsis thaliana growth. Digital images showing treatment differences are included. A summary of recommendations; materials and methods description; and references list are available in separate documents.


The Leaf Ionome As A Multivariable System To Detect A Plant's Physiological Status, Ivan R. Baxter, Olga Vitek, Brett Lahner, Balasubramaniam Muthukumar, Monica Borghi, Joe Morrissey, Mary Lou Guerinot, David E. Salt Aug 2008

The Leaf Ionome As A Multivariable System To Detect A Plant's Physiological Status, Ivan R. Baxter, Olga Vitek, Brett Lahner, Balasubramaniam Muthukumar, Monica Borghi, Joe Morrissey, Mary Lou Guerinot, David E. Salt

Dartmouth Scholarship

The contention that quantitative profiles of biomolecules contain information about the physiological state of the organism has motivated a variety of high-throughput molecular profiling experiments. However, unbiased discovery and validation of biomolecular signatures from these experiments remains a challenge. Here we show that the Arabidopsis thaliana (Arabidopsis) leaf ionome, or elemental composition, contains such signatures, and we establish statistical models that connect these multivariable signatures to defined physiological responses, such as iron (Fe) and phosphorus (P) homeostasis. Iron is essential for plant growth and development, but potentially toxic at elevated levels. Because of this, shoot Fe concentrations are …


Relative Crystallinity Of Plant Biomass: Studies On Assembly, Adaptation And Acclimation, Darby Harris, Seth Debolt Aug 2008

Relative Crystallinity Of Plant Biomass: Studies On Assembly, Adaptation And Acclimation, Darby Harris, Seth Debolt

Horticulture Faculty Publications

Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic …


Chloroplast Fe(Iii) Chelate Reductase Activity Is Essential For Seedling Viability Under Iron Limiting Conditions, Jeeyon Jeong, Christopher Cohu, Loubna Kerkeb, Marinus Pilon, Erin L. Connolly, Mary Lou Guerinot Jul 2008

Chloroplast Fe(Iii) Chelate Reductase Activity Is Essential For Seedling Viability Under Iron Limiting Conditions, Jeeyon Jeong, Christopher Cohu, Loubna Kerkeb, Marinus Pilon, Erin L. Connolly, Mary Lou Guerinot

Dartmouth Scholarship

Photosynthesis, heme biosynthesis, and Fe-S cluster assembly all take place in the chloroplast, and all require iron. Reduction of iron via a membrane-bound Fe(III) chelate reductase is required before iron transport across membranes in a variety of systems, but to date there has been no definitive genetic proof that chloroplasts have such a reduction system. Here we report that one of the eight members of the Arabidopsis ferric reductase oxidase (FRO) family, FRO7, localizes to the chloroplast. Chloroplasts prepared from fro7 loss-of-function mutants have 75% less Fe(III) chelate reductase activity and contain 33% less iron per microgram of chlorophyll than …


A Polyadenylation Factor Subunit Implicated In Regulating Oxidative Signaling In Arabidopsis Thaliana, Jingxian Zhang, Bala Subrahmanyam Addepalli, Kil-Young Yun, Arthur G. Hunt, Ruqiang Xu, Suryadevara Rao, Qingshun Q. Li, Deane L. Falcone Jun 2008

A Polyadenylation Factor Subunit Implicated In Regulating Oxidative Signaling In Arabidopsis Thaliana, Jingxian Zhang, Bala Subrahmanyam Addepalli, Kil-Young Yun, Arthur G. Hunt, Ruqiang Xu, Suryadevara Rao, Qingshun Q. Li, Deane L. Falcone

Kentucky Tobacco Research and Development Center Faculty Publications

BACKGROUND: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6.

METHODOLOGY/PRINCIPAL FINDINGS: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to …


Arabidopsis Mrna Polyadenylation Machinery: Comprehensive Analysis Of Protein-Protein Interactions And Gene Expression Profiling, Arthur G. Hunt, Ruqiang Xu, Balasubrahmanyam Addepalli, Suryadevara Rao, Kevin P. Forbes, Lisa R. Meeks, Denghui Xing, Min Mo, Hongwei Zhao, Amrita Bandyopadhyay, Lavanya Dampanaboina, Amanda Marion, Carol Von Lanken, Qingshun Quinn Li May 2008

Arabidopsis Mrna Polyadenylation Machinery: Comprehensive Analysis Of Protein-Protein Interactions And Gene Expression Profiling, Arthur G. Hunt, Ruqiang Xu, Balasubrahmanyam Addepalli, Suryadevara Rao, Kevin P. Forbes, Lisa R. Meeks, Denghui Xing, Min Mo, Hongwei Zhao, Amrita Bandyopadhyay, Lavanya Dampanaboina, Amanda Marion, Carol Von Lanken, Qingshun Quinn Li

Plant and Soil Sciences Faculty Publications

BACKGROUND: The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A) tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and …


The Mads-Domain Transcriptional Regulator Agamous-Like15 Promotes Somatic Embryo Development In Arabidopsis And Soybean, Dhiraj Thakare, Weining Tang, Kristine Hill, Sharyn E. Perry Apr 2008

The Mads-Domain Transcriptional Regulator Agamous-Like15 Promotes Somatic Embryo Development In Arabidopsis And Soybean, Dhiraj Thakare, Weining Tang, Kristine Hill, Sharyn E. Perry

Dartmouth Scholarship

The MADS-domain transcriptional regulator AGAMOUS-LIKE15 (AGL15) has been reported to enhance somatic embryo development when constitutively expressed. Here we report that loss-of-function mutants of AGL15, alone or when combined with a loss-of-function mutant of a closely related family member, AGL18, show decreased ability to produce somatic embryos. If constitutive expression of orthologs of AGL15 is able to enhance somatic embryo development in other species, thereby facilitating recovery of transgenic plants, then AGL15 may provide a valuable tool for crop improvement. To test this idea in soybean (Glycine max), a full-length cDNA encoding a putative ortholog of AGL15 was isolated from …


Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi Mar 2008

Systems Approach Identifies An Organic Nitrogen-Responsive Gene Network That Is Regulated By The Master Clock Control Gene Cca1, Rodrigo A. Gutierrez, Trevor L. Stokes, Karen Thum, Xiaodong Xu, Mariana Obertello, Manpreet S. Katari, Milos Tanurdzic, Alexis Dean, Damion C. Nero, C Robertson Mcclung, Gloria M. Coruzzi

Dartmouth Scholarship

Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of …


The Small Glycine-Rich Rna Binding Protein Atgrp7 Promotes Floral Transition In Arabidopsis Thaliana, Corinna Streitner, Selahattin Danisman, Franziska Wehrle, Jan C. Schoning, James R. Alfano, Dorothee Staiger Jan 2008

The Small Glycine-Rich Rna Binding Protein Atgrp7 Promotes Floral Transition In Arabidopsis Thaliana, Corinna Streitner, Selahattin Danisman, Franziska Wehrle, Jan C. Schoning, James R. Alfano, Dorothee Staiger

Center for Plant Science Innovation: Faculty and Staff Publications

The RNA binding protein AtGRP7 is part of a circadian slave oscillator in Arabidopsis thaliana that negatively autoregulates its own mRNA, and affects the levels of other transcripts. Here, we identify a novel role for AtGRP7 as a flowering-time gene. An atgrp7-1 T-DNA mutant flowers later than wild-type plants under both long and short days, and independent RNA interference lines with reduced levels of AtGRP7, and the closely related AtGRP8 protein, are also late flowering, particularly in short photoperiods. Consistent with the retention of a photoperiodic response, the transcript encoding the key photoperiodic regulator CONSTANS oscillates with a similar pattern …


Validation Of An Nsp-Based (Negative Selection Pattern) Gene Family Identification Strategy, Ronald L. Frank, Cyriac Kandoth, Fikret Erçal Jan 2008

Validation Of An Nsp-Based (Negative Selection Pattern) Gene Family Identification Strategy, Ronald L. Frank, Cyriac Kandoth, Fikret Erçal

Biological Sciences Faculty Research & Creative Works

Background: Gene family identification from ESTs can be a valuable resource for analysis of genome evolution but presents unique challenges in organisms for which the entire genome is not yet sequenced. We have developed a novel gene family identification method based on negative selection patterns (NSP) between family members to screen EST-generated contigs. This strategy was tested on five known gene families in Arabidopsis to see if individual paralogs could be identified with accuracy from EST data alone when compared to the actual gene sequences in this fully sequenced genome. Results: The NSP method uniquely identified family members in all …