Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang Jan 2024

Fused In Sarcoma Regulates Glutamate Signaling And Oxidative Stress Response, Chiong-Hee Wong, Abu Rahat, Howard C Chang

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mutations in fused in sarcoma (fust-1) are linked to ALS. However, how these ALS causative mutations alter physiological processes and lead to the onset of ALS remains largely unknown. By obtaining humanized fust-1 ALS mutations via CRISPR-CAS9, we generated a C. elegans ALS model. Homozygous fust-1 ALS mutant and fust-1 deletion animals are viable in C. elegans. This allows us to better characterize the molecular mechanisms of fust-1-dependent responses. We found FUST-1 plays a role in regulating superoxide dismutase, glutamate signaling, and oxidative stress. FUST-1 suppresses SOD-1 and VGLUT/EAT-4 in the nervous system. FUST-1 also regulates synaptic AMPA-type glutamate receptor …


Nucleus Accumbens Core Single Cell Ensembles Bidirectionally Respond To Experienced Versus Observed Aversive Events, Oyku Dinckol, Noah Harris Wenger, Jennifer E Zachry, Munir Gunes Kutlu Dec 2023

Nucleus Accumbens Core Single Cell Ensembles Bidirectionally Respond To Experienced Versus Observed Aversive Events, Oyku Dinckol, Noah Harris Wenger, Jennifer E Zachry, Munir Gunes Kutlu

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Fear learning is a critical feature of survival skills among mammals. In rodents, fear learning manifests itself through direct experience of the aversive event or social transmission of aversive stimuli such as observing and acting on conspecifics' distress. The neuronal network underlying the social transmission of information largely overlaps with the brain regions that mediate behavioral responses to aversive and rewarding stimuli. In this study, we recorded single cell activity patterns of nucleus accumbens (NAc) core neurons using in vivo optical imaging of calcium transients via miniature scopes. This cutting-edge imaging methodology not only allows us to record activity patterns …


Invited Review: Adrenocortical Function In Avian And Non-Avian Reptiles: Insights From Dispersed Adrenocortical Cells., Rocco V. Carsia, Patrick J. Mcilroy, Henry B John-Alder Jul 2023

Invited Review: Adrenocortical Function In Avian And Non-Avian Reptiles: Insights From Dispersed Adrenocortical Cells., Rocco V. Carsia, Patrick J. Mcilroy, Henry B John-Alder

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells …


Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry Feb 2023

Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We …


Cyclin C Regulated Oxidative Stress Responsive Transcriptome In Mus Musculus Embryonic Fibroblasts, David C Stieg, Kai-Ti Chang, Katrina F Cooper, Randy Strich Jun 2019

Cyclin C Regulated Oxidative Stress Responsive Transcriptome In Mus Musculus Embryonic Fibroblasts, David C Stieg, Kai-Ti Chang, Katrina F Cooper, Randy Strich

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The transcriptional changes that occur in response to oxidative stress help direct the decision to maintain cell viability or enter a cell death pathway. Cyclin C-Cdk8 is a conserved kinase that associates with the RNA polymerase II Mediator complex that stimulates or represses transcription depending on the locus. In response to oxidative stress, cyclin C, but not Cdk8, displays partial translocation into the cytoplasm. These findings open the possibility that cyclin C relocalization is a regulatory mechanism governing oxidative stress-induced transcriptional changes. In the present study, the cyclin C-dependent transcriptome was determined and compared to transcriptional changes occurring in oxidatively …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


Inhibition Of Post-Transcriptional Steps In Ribosome Biogenesis Confers Cytoprotection Against Chemotherapeutic Agents In A P53-Dependent Manner, Russell T Sapio, Anastasiya N Nezdyur, Matthew Krevetski, Leonid Anikin, Vincent J Manna, Natalie Minkovsky, Dimitri G Pestov Aug 2017

Inhibition Of Post-Transcriptional Steps In Ribosome Biogenesis Confers Cytoprotection Against Chemotherapeutic Agents In A P53-Dependent Manner, Russell T Sapio, Anastasiya N Nezdyur, Matthew Krevetski, Leonid Anikin, Vincent J Manna, Natalie Minkovsky, Dimitri G Pestov

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The p53-mediated nucleolar stress response associated with inhibition of ribosomal RNA transcription was previously shown to potentiate killing of tumor cells. Here, we asked whether targeting of ribosome biogenesis can be used as the basis for selective p53-dependent cytoprotection of nonmalignant cells. Temporary functional inactivation of the 60S ribosome assembly factor Bop1 in a 3T3 cell model markedly increased cell recovery after exposure to camptothecin or methotrexate. This was due, at least in part, to reversible pausing of the cell cycle preventing S phase associated DNA damage. Similar cytoprotective effects were observed after transient shRNA-mediated silencing of Rps19, but not …


Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco Sep 2014

Nack Is An Integral Component Of The Notch Transcriptional Activation Complex And Is Critical For Development And Tumorigenesis, Kelly L Weaver, Marie-Clotilde Alves-Guerra, Ke Jin, Zhiqiang Wang, Xiaoqing Han, Prathibha Ranganathan, Xiaoxia Zhu, Thiago Dasilva, Wei Liu, Francesca Ratti, Renee M Demarest, Cristos Tzimas, Meghan Rice, Rodrigo Vasquez-Del Carpio, Nadia Dahmane, David J Robbins, Anthony J Capobianco

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The Notch signaling pathway governs many distinct cellular processes by regulating transcriptional programs. The transcriptional response initiated by Notch is highly cell context dependent, indicating that multiple factors influence Notch target gene selection and activity. However, the mechanism by which Notch drives target gene transcription is not well understood. Herein, we identify and characterize a novel Notch-interacting protein, Notch activation complex kinase (NACK), which acts as a Notch transcriptional coactivator. We show that NACK associates with the Notch transcriptional activation complex on DNA, mediates Notch transcriptional activity, and is required for Notch-mediated tumorigenesis. We demonstrate that Notch1 and NACK are …


Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil Jun 2010

Notch1 Functions As A Tumor Suppressor In A Model Of K-Ras–Induced Pancreatic Ductal Adenocarcinoma, Linda Hanlon, Jacqueline L Avila, Renée M Demarest, Scott Troutman, Megan Allen, Francesca Ratti, Anil K Rustgi, Ben Z Stanger, Fred Radtke, Volkan Adsay, Fenella Long, Anthony J Capobianco, Joseph L Kissil

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

K-ras is the most commonly mutated oncogene in pancreatic cancer and its activation in murine models is sufficient to recapitulate the spectrum of lesions seen in human pancreatic ductal adenocarcinoma (PDAC). Recent studies suggest that Notch receptor signaling becomes reactivated in a subset of PDACs, leading to the hypothesis that Notch1 functions as an oncogene in this setting. To determine whether Notch1 is required for K-ras-induced tumorigenesis, we used a mouse model in which an oncogenic allele of K-ras is activated and Notch1 is deleted simultaneously in the pancreas. Unexpectedly, the loss of Notch1 in this model resulted in increased …


Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan Aug 2000

Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.