Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Understanding The Molecular Mechanism Of Ilv1 Stress Sensitivity In Yeast By Examination Of Differential Patterns Of Gene Expression Between Wild-Type And Ilv1 Knockout Strains Of Saccharomyces Cerevisiae, Emily Schuster Dec 2022

Understanding The Molecular Mechanism Of Ilv1 Stress Sensitivity In Yeast By Examination Of Differential Patterns Of Gene Expression Between Wild-Type And Ilv1 Knockout Strains Of Saccharomyces Cerevisiae, Emily Schuster

Honors Theses

As arguably the most widely used industrial eukaryote, Saccharomyces cerevisiae has become one of the many model organisms used to study molecular genetics. A recent unpublished study at the University of Tennessee - Chattanooga showed that yeast cells that had the ILV1 gene knocked out had reduced survivability under stress conditions. This study then focused on the role of ILV1 in the stress response of cells by measuring the expression levels of 11 candidate genes that are all involved in some critical pathway in the yeast to see how gene expression was influenced as a result of the loss of …


Multi-Generational Effects Of ∆9-Tetrahydrocannabinol Exposure On Gene Expression In Liver Tissue, Kayla Lovitt May 2020

Multi-Generational Effects Of ∆9-Tetrahydrocannabinol Exposure On Gene Expression In Liver Tissue, Kayla Lovitt

Honors Theses

Cannabis is the most commonly used, cultivated, and trafficked illicit drug worldwide. Increased availability and acceptance of cannabis and cannabinoid-containing products provide the necessity for understanding how these substances influence aging. In this study, zebrafish (Danio rerio) were exposed to concentrations of Δ9-tetrahydrocannabinol (THC) (0.08, 0.4, 2 µM) during embryonic-larval development, the effects on aging were measured 30 months later and in the offspring of the exposed fish (F1 generation. We observed results indicating a biphasic and hormetic effect. Treatment with the lowest concentration of THC significantly increased egg production, while higher concentrations resulted in impaired …


Investigation Of Even-Skipped, A Developmentally-Regulated Gene Controlling Neural Segmentation In Dragonflies, Kathryn Bangser Jun 2019

Investigation Of Even-Skipped, A Developmentally-Regulated Gene Controlling Neural Segmentation In Dragonflies, Kathryn Bangser

Honors Theses

A comprehensive understanding of the genetic mechanisms underlying pattern formation and neurogenesis is necessary in order to trace the evolutionary history of insect embryogenesis.

One of the most important processes of embryogenesis is the organized pattern formation that allows for proper body segmentation and neural development. Proper segmentation, which relies on a series of specific gene expressions, is necessary for the development of an operational nervous system. Even-skipped (eve), one such regulatory gene, has been studied extensively in certain model organisms, and theories regarding the evolution of its functional role could be further elucidated by visualizing its expression …


Elucidating The Interplay Between Sodium Selenite On The Tick Amblyomma Maculatum Selenoprotein Gene Expression, Afnan M. Beauti May 2017

Elucidating The Interplay Between Sodium Selenite On The Tick Amblyomma Maculatum Selenoprotein Gene Expression, Afnan M. Beauti

Honors Theses

Selenium (Se) is an element recognized as an essential micronutrient in eukaryote organisms. Selenoproteins contain selenium as selenocysteine, the 21st amino acid. Selenium plays a role in cell growth and functioning. At low concentrations, it can induce growth and at high concentrations, it can cause a cell to stop growing and potentially have toxic effects on the cell and organism. When selenium levels are high, oxidative stress results by the production of reactive oxidative species. Selenoproteins, however, can aid the antioxidant response in the cell. Ticks are arthropods of interest, as they are one of few that contain many selenogenes, …


Investigating The Co-Regulatory Role Of Midline And Extramacrochaetae In Regulating Eye Development And Vision In Drosophila Melanogaster, Lillian M. Forstall May 2014

Investigating The Co-Regulatory Role Of Midline And Extramacrochaetae In Regulating Eye Development And Vision In Drosophila Melanogaster, Lillian M. Forstall

Honors Theses

The Honors thesis research focused on the roles of extramacrochaetae and midline in regulating eye development and the vision of Drosophila melanogaster. It is known from previous studies that extramacrochaetae (emc) and midline (mid) independently regulate the formation of ommatidial units in the Drosophila compound eye. However, the thesis focuses on the interaction of these two genes and their co-dependent roles in regulating eye development. This study also attempts to explain the recovered formation of ommatidial units and interommatidial bristles when the expression of both of these genes is reduced and whether flies doubly mutant …