Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Biological Sciences Faculty Research & Creative Works

2013

Animals

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Oxidative Stress Disruption Of Receptor-Mediated Calcium Signaling Mechanisms, Tso-Hao Tang, Chiung-Tan Chang, Hsiu-Jen Wang, Joshua Erickson, Rhett A. Reichard, Alexis Martin, Erica Shannon, Adam L. Martin, Yue-Wern Huang, Robert Aronstam Jul 2013

Oxidative Stress Disruption Of Receptor-Mediated Calcium Signaling Mechanisms, Tso-Hao Tang, Chiung-Tan Chang, Hsiu-Jen Wang, Joshua Erickson, Rhett A. Reichard, Alexis Martin, Erica Shannon, Adam L. Martin, Yue-Wern Huang, Robert Aronstam

Biological Sciences Faculty Research & Creative Works

Background: Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results: Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+] …


Honokiol Blocks Store Operated Calcium Entry In Cho Cells Expressing The M3 Muscarinic Receptor: Honokiol And Muscarinic Signaling, Hsiu-Jen Wang, Alexis Martin, Po-Kuan Chao, Rhett A. Reichard, Adam L. Martin, Yue-Wern Huang, Ming-Huan Chan, Robert Aronstam Feb 2013

Honokiol Blocks Store Operated Calcium Entry In Cho Cells Expressing The M3 Muscarinic Receptor: Honokiol And Muscarinic Signaling, Hsiu-Jen Wang, Alexis Martin, Po-Kuan Chao, Rhett A. Reichard, Adam L. Martin, Yue-Wern Huang, Ming-Huan Chan, Robert Aronstam

Biological Sciences Faculty Research & Creative Works

Background: Honokiol, a cell-permeable phenolic compound derived from the bark of magnolia trees and present in Asian herbal teas, has a unique array of pharmacological actions, including the inhibition of multiple autonomic responses. We determined the effects of honokiol on calcium signaling underlying transmission mediated by human M3 muscarinic receptors expressed in Chinese hamster ovary (CHO) cells. Receptor binding was determined in radiolabelled ligand binding assays; changes in intracellular calcium concentrations were determined using a fura-2 ratiometric imaging protocol; cytotoxicity was determined using a dye reduction assay.

Results: Honokiol had a potent (EC50 ≈ 5 μmol/l) inhibitory effect on store …