Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Tests And Refinements Of A General Structure-Activity Model For Avian Repellents, Larry Clark, Pankaj Shah Jan 1994

Tests And Refinements Of A General Structure-Activity Model For Avian Repellents, Larry Clark, Pankaj Shah

Larry Clark

We tested the robustness of a structure-activity model for avian trigeminal chemoirritants. Fourteen benzoates and acetophenones were tested using European starlings Sturn us vulgaris as a bioassay. In general. the pre­ viously proposed model was a reasonable predictor of repellency (i.e., irritant potency). We found that the presence of a phenyl ring was critical to repel­ lency. Basicity of the molecule is the next most critical feature influencing repellency. The presence of an acidic function within the electron-withdrawing functionality seriously detracts from repellency. The presence or absence of an electron-withdrawing or -donating group may potentiate repellent effects, but its presence …


Avian Chemical Repellency: A Structure-Activity Approach And Implications, Pankaj Shah, Russell Mason, Larry Clark Jan 1992

Avian Chemical Repellency: A Structure-Activity Approach And Implications, Pankaj Shah, Russell Mason, Larry Clark

Larry Clark

Until recently, the discovery of avian sensory repellents has been empirical (MaRnn, AnAmR 'Inn l;qr\r FlR'l), Hm> !ilv!ilr, recent liltudilillil in our laboratory have shown that many avian repellents have similar perceptual and structural properties (Mason et al. 1989; Mason Clark and Shah 1991; Clark and Shah 1991; Clark, Shah and Mason 1991; Shah, Clark and Mason 1991). For example, methyl anthranilate, which has a grapy odor, is repel­ lent to birds (Kare and Pick, 1960). Ortho-aminoacetophenone has an odor and structure similar to that of methyl anthranilate, differing only in the substitution of a ketone for an ester group …


Taxon-Specific Differences In Responsiveness To Capsaicin And Several Analogues: Correlates Between Chemical Structure And Behavioral Aversiveness, Russell Mason, Jay Bean, Pankaj Shah, Larry Clark Jan 1991

Taxon-Specific Differences In Responsiveness To Capsaicin And Several Analogues: Correlates Between Chemical Structure And Behavioral Aversiveness, Russell Mason, Jay Bean, Pankaj Shah, Larry Clark

Larry Clark

The present set of experiments was designed to explore avian insensitivity to capsaicin. Based upon a molecular model of avian chemosen­ sory repellency, we hypothesized that structural modifications of the basic capsaicin molecule, which is itself not aversive to birds, might produce aver­ sive analogues. To this end, European starlings (Sturnus vulgaris) and Nor­ way rats (Rattus norvegicus) were given varied concentrations of synthetic capsaicin and four analogues (methyl capsaicin, veratryl amine, veratryl acet­ amide, vanillyl acetamide) in feeding and drinking tests. The results agreed with a model that we are developing to describe the chemical nature of avian repellents. …


Chemical Repellency In Birds: Relationship Between Chemical Structure And Avoidance Response, Larry Clark, Pankaj Shah, Russell Mason Jan 1991

Chemical Repellency In Birds: Relationship Between Chemical Structure And Avoidance Response, Larry Clark, Pankaj Shah, Russell Mason

Larry Clark

We examined how molecular structure of24 anthranilate and benzoic acid deriva­ tives correlated with drinking behavior in European starlings Sturnus vulgaris.The effectiveness of bird repellents was &?SOciated with basicity, the presence of an electron onating group in resonance with an electron-withdrawing carboxylic group on a phenyl ring, and a heterocyclic ring in the same pi cloud plane as the phenyl ring. Of the benzoic acid derivatives tested in this study, methyl, ethyl, dimethyl, and linalylanthranilate as well as anthranilic acid and 4-ketobenztriazine were repellent to birds. Water consumption was significantly reduced relative to control levels at concentrations as low as …


Ortho-Aminoacetophenone Repellency To Birds: Similiarities To Methyl Antrhanilate, Russell Mason, Larry Clark, Pankaj Shah Jan 1991

Ortho-Aminoacetophenone Repellency To Birds: Similiarities To Methyl Antrhanilate, Russell Mason, Larry Clark, Pankaj Shah

Larry Clark

Methyl anthranilate is an effective bird repellent at concentrations 2:1.0% (g/g). Ortho-ami­ noacetophenone (OAP) has an odor similar to that of methyl anthranilate and is chemically (structurally) similar. Coincidentally, OAP is present in the scent gland secretions of mustelid species that prey on birds. For these reasons, we chose to test the bird repellency of this material and 3 isomers to European starlings (Stumus vulgaris). Ortho-aminoacetophenone was repellent at concentrations :50.01% in both choice and no-choice feeding tests. The other structural isomers (meta-, para-, alpha-) were less effective. Chemically, the results suggest that hydrogen-bonded ring structure formation and basicity predict …


Nonlethal Bird Repellents: In Search Of A General Model Relating Repellency And Chemical Structure, Larry Clark, Pankaj Shah Jan 1991

Nonlethal Bird Repellents: In Search Of A General Model Relating Repellency And Chemical Structure, Larry Clark, Pankaj Shah

Larry Clark

Identification of potential repellents through molecular modeling has implications for the devel­ opment of commerciaUy viable, ecologically sound. nonlethal bird repellents. We tested isomers (ortho, meta, para) and moieties (amino, hydroxy, methoxy) of acetophenones for their effectiveness as bird repellents to better understand the nature of repellency in birds. ChemicaUy, basicity of a substituted phenyl ring, as de&ned by the electron-donating substituent, probably is an important feature infiuencing repellency; i.e., more basic substituents result in more potent repellents. Isomeric position of the electron-donating substituent, which leads to resonance of lone pairs of electrons.• is also an important feature of repellency; …


Prediction Of Avian Repellency From Chemical Structure: The Aversiveness Of Vanillin, Vanillyl Alcohol, And Veratryl Alcohol, Pankaj Shah, Larry Clark, Russel Mason Jan 1991

Prediction Of Avian Repellency From Chemical Structure: The Aversiveness Of Vanillin, Vanillyl Alcohol, And Veratryl Alcohol, Pankaj Shah, Larry Clark, Russel Mason

Larry Clark

The effectiveness of bird repellents is associated with the presence of an electron-withdrawing group (carbonyl or carboxyl) and an electron-donating group in resonance on a phenyl ring. The present experiments were designed to examine the relative importance of these structural features. European starlings (Sturnus vulgaris) were presented with vanillin, vanillyl alcohol, and veratryl alcohol in two-cup and one-cup feeding trials and in one-bottle drinking tests. In feeding trials, veratryl alcohol was significantly more aversive than the other two chemicals. In drinking tests. veratryl alcohol was repellent only at the highest concentration (0.5% ml/ml), and was lethal at that concentration and …