Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Life Sciences

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Mechanism Of Tau Propagation: Putative Therapeutic Approaches, Viktoriya Morozova Sep 2022

Mechanism Of Tau Propagation: Putative Therapeutic Approaches, Viktoriya Morozova

Dissertations, Theses, and Capstone Projects

One of the characteristics of Alzheimer’s disease and associated tauopathies is the accumulation and aggregation of hyperphosphorylated tau protein. The biological activity of tau is to bind to tubulin and promote its assembly into microtubules with subsequent stabilization of the latter. When tau gets hyperphosphorylated it cannot bind to tubulin and carry on its function, instead, it binds to normal tau and sequesters it from microtubules leading to disruption of microtubular assembly and ultimately to the death of neurons. Our lab had previously shown that tau phosphorylation sites 199, 212, 231, and 262, combined with the FTDP-17 mutation R406W (Pathological …


Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption Of The Nuclear Lamina, Tdp-43 Mislocalization And Cell Death, Robert F. Candia, Leah S. Cohen, Viktoriya Morozova, Christopher Corbo, Alejandra D. Alonso May 2022

Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption Of The Nuclear Lamina, Tdp-43 Mislocalization And Cell Death, Robert F. Candia, Leah S. Cohen, Viktoriya Morozova, Christopher Corbo, Alejandra D. Alonso

Publications and Research

Tau is a cytosolic protein that has also been observed in the nucleus, where it has multiple proposed functions that are regulated by phosphorylation. However, the mechanism underlying the nuclear import of tau is unclear, as is the contribution of nuclear tau to the pathology of tauopathies. We have previously generated a pathological form of tau, PH-tau (pseudophosphorylation mutants S199E, T212E, T231E, and S262E) that mimics AD pathological behavior in cells, Drosophila, and a mouse model. Here, we demonstrated that PH-tau translocates into the nucleus of transiently transfected HEK-293 cells, but wildtype tau does not. We identified a putative …


Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption Of The Nuclear Lamina, Tdp-43 Mislocalization And Cell Death, Robert F. Candia, Leah S. Cohen, Viktoriya Morozova, Christopher Corbo, Alejandra D. Alonso Jan 2022

Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption Of The Nuclear Lamina, Tdp-43 Mislocalization And Cell Death, Robert F. Candia, Leah S. Cohen, Viktoriya Morozova, Christopher Corbo, Alejandra D. Alonso

Publications and Research

Tau is a cytosolic protein that has also been observed in the nucleus, where it has multiple proposed functions that are regulated by phosphorylation. However, the mechanism underlying the nuclear import of tau is unclear, as is the contribution of nuclear tau to the pathology of tauopathies. We have previously generated a pathological form of tau, PH-tau (pseudophosphorylation mutants S199E, T212E, T231E, and S262E) that mimics AD pathological behavior in cells, Drosophila, and a mouse model. Here, we demonstrated that PH-tau translocates into the nucleus of transiently transfected HEK-293 cells, but wildtype tau does not. We identified a putative …


Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury Feb 2020

Tamalin/Gras-1 Connects Glutamate Receptor Activity To The Insulin/Igf Signaling Cascade To Regulate Neuroprotection In A Nematode Model Of Excitotoxicity, Ayesha Chowdhury

Dissertations, Theses, and Capstone Projects

Brain ischemia is a major cause of debilitation and death in the United States. Excitotoxicity, a condition that arises from the accumulation of glutamate (Glu) in the synapse that leads to overactivation of Glu receptors (GluRs), is the major mechanism of neuronal damage in brain ischemia / stroke. Although it is commonly acknowledged that over activation of GluRs leads to neurodegeneration, it has been recently shown that even during excitotoxicity Glu has a concurrent important role in regulating neuroprotection. GluR-activated transcription factors seem to mediate this neuroprotection, but it remains unclear which signaling cascades and transcription factors are regulated by …


Green Tea Extract, Epigallocatechin Gallate, Protect Against Methamphetamine-Induced Striatal Neurotoxicity In Mice, Allen L. Pan Feb 2019

Green Tea Extract, Epigallocatechin Gallate, Protect Against Methamphetamine-Induced Striatal Neurotoxicity In Mice, Allen L. Pan

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) is a strong psychostimulant and its exposure can lead to serious neurological complications. METH-induced neuronal injury is the result of a complex interplay of different factors including dopamine (DA) overflow, oxidative stress and neuroinflammation. Although the mechanisms of METH-induced neurotoxicity have been extensively studied, there is still no effective therapeutic treatment. Therefore, it is essential to study potential drug candidates that can treat METH-induced neurotoxicity. Green tea extract, epigallocatechin gallate (EGCG), has emerged as a neuroprotective agent that can protect against several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Recently, our lab has shown that EGCG prevents …


The Master Synaptic Regulator: Activity Regulated Cytoskeleton Associated Protein, Arc, In Normal Aging And Diseases With Cognitive Impairment, Amber Khan Feb 2019

The Master Synaptic Regulator: Activity Regulated Cytoskeleton Associated Protein, Arc, In Normal Aging And Diseases With Cognitive Impairment, Amber Khan

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with complex underlying pathogenic mechanisms. Epidemiological studies have forecasted that in the next 3 decades, the number of AD cases will rise to epidemic proportions with enormous medical, emotional and financial burdens impacting individuals affected and society. Among many risk factors for AD, advancing age is clearly essential and necessary. Revelation of molecular changes in synaptic activities leading to the prodromal, mild cognitive impairment (MCI) stage may help illuminate the course of pathogenic progression and its cause-effect relationship with various targets thereby enabling target-driven disease-modifying therapeutic agents for AD.

Activity-regulated cytoskeleton-associated (Arc) …


Hyperphosphorylation Of Tau Associates With Changes In Its Function Beyond Microtubule Stability, Alejandra D. Alonso, Leah S. Cohen, Christopher Corbo, Viktoriya Morozova, Abdeslem Elldrissi, Greg R. Phillips, Frida E. Kleiman Oct 2018

Hyperphosphorylation Of Tau Associates With Changes In Its Function Beyond Microtubule Stability, Alejandra D. Alonso, Leah S. Cohen, Christopher Corbo, Viktoriya Morozova, Abdeslem Elldrissi, Greg R. Phillips, Frida E. Kleiman

Publications and Research

Tau is a neuronal microtubule associated protein whose main biological functions are to promote microtubule self-assembly by tubulin and to stabilize those already formed. Tau also plays an important role as an axonal microtubule protein. Tau is an amazing protein that plays a key role in cognitive processes, however, deposits of abnormal forms of tau are associated with several neurodegenerative diseases, including Alzheimer disease (AD), the most prevalent, and Chronic Traumatic Encephalopathy (CTE) and Traumatic Brain Injury (TBI), the most recently associated to abnormal tau. Tau post-translational modifications (PTMs) are responsible for its gain of toxic function. Alonso et al. …


Ck2—An Emerging Target For Neurological And Psychiatric Disorders, Julia Castello, Andre Ragnauth, Eitan Friedman, Heike Rebholz Jan 2017

Ck2—An Emerging Target For Neurological And Psychiatric Disorders, Julia Castello, Andre Ragnauth, Eitan Friedman, Heike Rebholz

Publications and Research

Protein kinase CK2 has received a surge of attention in recent years due to the evidence of its overexpression in a variety of solid tumors and multiple myelomas as well as its participation in cell survival pathways. CK2 is also upregulated in the most prevalent and aggressive cancer of brain tissue, glioblastoma multiforme, and in preclinical models, pharmacological inhibition of the kinase has proven successful in reducing tumor size and animal mortality. CK2 is highly expressed in the mammalian brain and has many bona fide substrates that are crucial in neuronal or glial homeostasis and signaling processes across synapses. Full …


Effect Of Cntf Derived Peptide, P021 On Cognition And Pathology In 3xtg-Ad Mouse Model Of Alzheimer's Disease, Narjes Baazaoui Jun 2016

Effect Of Cntf Derived Peptide, P021 On Cognition And Pathology In 3xtg-Ad Mouse Model Of Alzheimer's Disease, Narjes Baazaoui

Dissertations, Theses, and Capstone Projects

Studies described in this thesis deal with the preventive effects of a neurogenic/neurotropic peptidergic compound, P021, on neurogenesis and synaptic deficits, neurodegeneration, cognitive impairment, and Ab and tau pathologies in a 3xTg-AD mouse model of Alzheimer’s disease (AD).

Background: AD is a chronic progressive neurodegenerative disease. Its multifactorial nature and the heterogeneity make its treatment especially challenging. Although it is a major burden in society, at present there is no drug that can stop or slow down the progression of the disease. Currently, the only available treatments are symptomatic and for mild to severe stages. The development of a drug …


Death Associated Protein Kinase (Dapk) -Mediated Neurodegenerative Mechanisms In Nematode Excitotoxicity, John S. Del Rosario, Katherine Genevieve Feldmann, Towfiq Ahmed, Uzair Amjad, Bakkeung Ko, Junhyung An, Tauhid Mahmud, Maha Salama, Shirley Mei, Daniel Asemota, Itzhak Mano Apr 2015

Death Associated Protein Kinase (Dapk) -Mediated Neurodegenerative Mechanisms In Nematode Excitotoxicity, John S. Del Rosario, Katherine Genevieve Feldmann, Towfiq Ahmed, Uzair Amjad, Bakkeung Ko, Junhyung An, Tauhid Mahmud, Maha Salama, Shirley Mei, Daniel Asemota, Itzhak Mano

Publications and Research

Background: Excitotoxicity (the toxic overstimulation of neurons by the excitatory transmitter Glutamate) is a central process in widespread neurodegenerative conditions such as brain ischemia and chronic neurological diseases. Many mechanisms have been suggested to mediate excitotoxicity, but their significance across diverse excitotoxic scenarios remains unclear. Death Associated Protein Kinase (DAPK), a critical molecular switch that controls a range of key signaling and cell death pathways, has been suggested to have an important role in excitotoxicity. However, the molecular mechanism by which DAPK exerts its effect is controversial. A few distinct mechanisms have been suggested by single (sometimes contradicting) studies, and …


Neuroinflammation And J2 Prostaglandins: Linking Impairment Of The Ubiquitin-Proteasome Pathway And Mitochondria To Neurodegeneration, Maria E. Figueiredo-Pereira, Patricia Rockwell, Thomas Schmidt-Glenewinkel, Peter Serrano Jan 2015

Neuroinflammation And J2 Prostaglandins: Linking Impairment Of The Ubiquitin-Proteasome Pathway And Mitochondria To Neurodegeneration, Maria E. Figueiredo-Pereira, Patricia Rockwell, Thomas Schmidt-Glenewinkel, Peter Serrano

Publications and Research

The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation) may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia, and prion diseases. Cyclooxygenases (COX-1 and COX-2), which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly …


The Role Of The Striatal Neuropeptide Neurotensin In The Methamphetamine-Induced Neural Injury In Mice, Qingkun Liu Oct 2014

The Role Of The Striatal Neuropeptide Neurotensin In The Methamphetamine-Induced Neural Injury In Mice, Qingkun Liu

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) is a widely abused psychostimulant that induces neurotoxicity to several brain regions, including the striatum. Similar to dopamine (DA) in chemical structure, METH can be transported into DA pre-synaptic terminals, evoking the neurodegeneration in DA terminals and post-synaptic striatal neurons. Despite the critical role of DA in METH-induced neurodegeneration, no pharmaceutical therapeutics has been approved for these conditions. It is therefore essential to investigate the endogenous factors regulating the dopaminergic system. The neuropeptide neurotensin has emerged as a potential modulator of METH-induced striatal neurodegeneration mainly due to its intimate interactions with dopamine in the striatum.

In this study, …


Atypical Multisensory Integration In Niemann-Pick Type C Disease – Towards Potential Biomarkers, Gizely N. Andrade, Sophie Molholm, John S. Butler, Alice Brown Brandwein, Steven U. Walkley, John J. Foxe Sep 2014

Atypical Multisensory Integration In Niemann-Pick Type C Disease – Towards Potential Biomarkers, Gizely N. Andrade, Sophie Molholm, John S. Butler, Alice Brown Brandwein, Steven U. Walkley, John J. Foxe

Publications and Research

Background: Niemann-Pick type C (NPC) is an autosomal recessive disease in which cholesterol and glycosphingolipids accumulate in lysosomes due to aberrant cell-transport mechanisms. It is characterized by progressive and ultimately terminal neurological disease, but both pre-clinical studies and direct human trials are underway to test the safety and efficacy of cholesterol clearing compounds, with good success already observed in animal models. Key to assessing the effectiveness of interventions in patients, however, is the development of objective neurobiological outcome measures. Multisensory integration mechanisms present as an excellent candidate since they necessarily rely on the fidelity of long-range neural connections between the …


Screen For Suppressors And Enhancers Of Excitotoxic Neurodegeneration, Anthony Omorodion Edokpolo Jan 2014

Screen For Suppressors And Enhancers Of Excitotoxic Neurodegeneration, Anthony Omorodion Edokpolo

Dissertations and Theses

Excitotoxicity is an important and frequently observed neurodegenerative process. Excitotoxicity mediates brain damage in a range of diseases and conditions including stroke, and is triggered by excessive stimulation of glutamatergic synapses. In spite of extensive studies, the molecular mechanisms involved in excitotoxicity following the over-activation of postsynaptic glutamate receptors are not well understood, and clinical trials based on our partial understanding of the process ended with disappointment. Genetic screens in simple animal models offer a powerful alternative approach, since screens are unbiased, analysis is facilitated by strong research tools, and cellular mechanisms are highly conserved through evolution. We produced a …


Glia-Mediated Neurodegeneration In The Drosophila Melanogaster Cns, Ivan J. Santiago Jan 2012

Glia-Mediated Neurodegeneration In The Drosophila Melanogaster Cns, Ivan J. Santiago

Dissertations and Theses

No abstract provided.


Morphological And Neuroanatomical Changes Associated With The Induction Of Neurodegeneration And Life Span Reduction In Drosophila Melanogaster By Glia Targeted Expression Of Cdh1/Rap/Fzr, An Activator Of The Anaphase Promoting Complex, Israel Nnah Jan 2012

Morphological And Neuroanatomical Changes Associated With The Induction Of Neurodegeneration And Life Span Reduction In Drosophila Melanogaster By Glia Targeted Expression Of Cdh1/Rap/Fzr, An Activator Of The Anaphase Promoting Complex, Israel Nnah

Dissertations and Theses

"The retina aberrant in pattern (rap) gene encodes the Fizzy-related protein (Fzr), an activator of the E3 ubiquitin ligase complex: the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C facilitates the cell cycle stage-specific degradation of cyclins and other mitotic regulators, resulting in the inactivation of Cdk (Cyclin Dependent Kinase) complexes, thus promoting completion of mitosis. Previous studies from our laboratory have shown that Rap/Fzr (the Drosophila homolog of the mammalian Cdh1) regulates glia differentiation and promotes neuron formation. Recent studies have shown that the glia specific over expression of Rap/Fzr causes progressive neurodegeneration and life span reduction preceded by temperature sensitive paralysis, …