Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

External Link

Neuroscience and Neurobiology

Mice

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter Dec 2015

Genetic And Acute Cpeb1 Depletion Ameliorate Fragile X Pathophysiology, Tsuyoshi Udagawa, Natalie Farny, Mira Jakovcevski, Hanoch Kaphzan, Juan Alarcon, Shobha Anilkumar, Maria Ivshina, Jessica Hurt, Kentaro Nagaoka, Vijayalaxmi Nalavadi, Lori Lorenz, Gary Bassell, Schahram Akbarian, Sumantra Chattarji, Eric Klann, Joel Richter

Natalie G. Farny

Fragile X syndrome (FXS), the most common cause of inherited mental retardation and autism, is caused by transcriptional silencing of FMR1, which encodes the translational repressor fragile X mental retardation protein (FMRP). FMRP and cytoplasmic polyadenylation element-binding protein (CPEB), an activator of translation, are present in neuronal dendrites, are predicted to bind many of the same mRNAs and may mediate a translational homeostasis that, when imbalanced, results in FXS. Consistent with this possibility, Fmr1(-/y); Cpeb1(-/-) double-knockout mice displayed amelioration of biochemical, morphological, electrophysiological and behavioral phenotypes associated with FXS. Acute depletion of CPEB1 in the hippocampus of adult Fmr1(-/y) mice …


Argonaute Protein Identity And Pairing Geometry Determine Cooperativity In Mammalian Rna Silencing, Jennifer Broderick, William Salomon, Sean Ryder, Neil Aronin, Phillip Zamore May 2015

Argonaute Protein Identity And Pairing Geometry Determine Cooperativity In Mammalian Rna Silencing, Jennifer Broderick, William Salomon, Sean Ryder, Neil Aronin, Phillip Zamore

Sean P. Ryder

Small RNAs loaded into Argonaute proteins direct silencing of complementary target mRNAs. It has been proposed that multiple, imperfectly complementary small interfering RNAs or microRNAs, when bound to the 3' untranslated region of a target mRNA, function cooperatively to silence target expression. We report that, in cultured human HeLa cells and mouse embryonic fibroblasts, Argonaute1 (Ago1), Ago3, and Ago4 act cooperatively to silence both perfectly and partially complementary target RNAs bearing multiple small RNA-binding sites. Our data suggest that for Ago1, Ago3, and Ago4, multiple, adjacent small RNA-binding sites facilitate cooperative interactions that stabilize Argonaute binding. In contrast, small RNAs …


Coincident Generation Of Pyramidal Neurons And Protoplasmic Astrocytes In Neocortical Columns, Sanjay Magavi, Drew Friedmann, Garrett Banks, Alberto Stolfi, Carlos Lois May 2013

Coincident Generation Of Pyramidal Neurons And Protoplasmic Astrocytes In Neocortical Columns, Sanjay Magavi, Drew Friedmann, Garrett Banks, Alberto Stolfi, Carlos Lois

Carlos Lois

Astrocytes, one of the most common cell types in the brain, are essential for processes ranging from neural development through potassium homeostasis to synaptic plasticity. Surprisingly, the developmental origins of astrocytes in the neocortex are still controversial. To investigate the patterns of astrocyte development in the neocortex we examined cortical development in a transgenic mouse in which a random, sparse subset of neural progenitors undergoes CRE/lox recombination, permanently labeling their progeny. We demonstrate that neural progenitors in neocortex generate discrete columnar structures that contain both projection neurons and protoplasmic astrocytes. Ninety-five percent of developmental cortical columns labeled in our system …


Dsarm/Sarm1 Is Required For Activation Of An Injury-Induced Axon Death Pathway, Jeannette Osterloh, Jing Yang, Timothy Rooney, A. Fox, Robert Adalbert, Eric Powell, Amy Sheehan, Michelle Avery, Rachel Hackett, Mary Logan, Jennifer Macdonald, Jennifer Ziegenfuss, Stefan Milde, Ying-Ju Hou, Carl Nathan, Aihao Ding, Robert Brown, Laura Comforti, Michael Coleman, Marc Tessier-Lavigne, Stephan Zuchner, Marc Freeman Dec 2012

Dsarm/Sarm1 Is Required For Activation Of An Injury-Induced Axon Death Pathway, Jeannette Osterloh, Jing Yang, Timothy Rooney, A. Fox, Robert Adalbert, Eric Powell, Amy Sheehan, Michelle Avery, Rachel Hackett, Mary Logan, Jennifer Macdonald, Jennifer Ziegenfuss, Stefan Milde, Ying-Ju Hou, Carl Nathan, Aihao Ding, Robert Brown, Laura Comforti, Michael Coleman, Marc Tessier-Lavigne, Stephan Zuchner, Marc Freeman

Dr Robert Brown

Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile alpha/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct …