Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Global Patterns And Controls Of Soil Organic Carbon Dynamics As Simulated By Multiple Terrestrial Biosphere Models: Current Status And Future Directions, Hanqin Tian, Chaoqun (Crystal) Lu, Jia Yang, Kamaljit Banger, Denorah N. Huntzinger, Christopher R. Schwalm, Anna M. Michalak, Robert Cook, Philippe Ciais, Daniel Hayes, Maoyi Huang, Akihiko Ito, Atul K. Jain, Huimin Lei, Jiafu Mao, Shufen Pan, Wilfred M. Post, Shushi Peng, Benjamin Poulter, Wei Ren, Daniel Ricciuto, Kevin Schaefer, Xiaoying Shi, Bo Tao, Weile Wang, Yaxing Wei, Qichun Yang, Bowen Zhang, Ning Zeng Jun 2015

Global Patterns And Controls Of Soil Organic Carbon Dynamics As Simulated By Multiple Terrestrial Biosphere Models: Current Status And Future Directions, Hanqin Tian, Chaoqun (Crystal) Lu, Jia Yang, Kamaljit Banger, Denorah N. Huntzinger, Christopher R. Schwalm, Anna M. Michalak, Robert Cook, Philippe Ciais, Daniel Hayes, Maoyi Huang, Akihiko Ito, Atul K. Jain, Huimin Lei, Jiafu Mao, Shufen Pan, Wilfred M. Post, Shushi Peng, Benjamin Poulter, Wei Ren, Daniel Ricciuto, Kevin Schaefer, Xiaoying Shi, Bo Tao, Weile Wang, Yaxing Wei, Qichun Yang, Bowen Zhang, Ning Zeng

Chaoqun (Crystal) Lu

Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long …


Comparison Of Spatial Association Approaches For Landscape Mapping Of Soil Organic Carbon Stocks, Bradley A. Miller, S. Koszinski, M. Wehrhan, M. Sommer Mar 2015

Comparison Of Spatial Association Approaches For Landscape Mapping Of Soil Organic Carbon Stocks, Bradley A. Miller, S. Koszinski, M. Wehrhan, M. Sommer

Bradley A Miller

The distribution of soil organic carbon (SOC) can be variable at small analysis scales, but consideration of its role in regional and global issues demands the mapping of large extents. There are many different strategies for mapping SOC, among which is to model the variables needed to calculate the SOC stock indirectly or to model the SOC stock directly. The purpose of this research is to compare direct and indirect approaches to mapping SOC stocks from rule-based, multiple linear regression models applied at the landscape scale via spatial association. The final products for both strategies are high-resolution maps of SOC …


Impact Of Multi-Scale Predictor Selection For Modeling Soil Properties, Bradley A. Miller, Sylvia Koszinski, Marc Wehrhan, Michael Sommer Feb 2015

Impact Of Multi-Scale Predictor Selection For Modeling Soil Properties, Bradley A. Miller, Sylvia Koszinski, Marc Wehrhan, Michael Sommer

Bradley A Miller

Applying a data mining tool used regularly in digital soil mapping, this research focuses on the optimal inclusion of predictors for soil–landscape modeling by utilizing as wide of a pool of variables as possible. Predictor variables for digital soil mapping are often chosen on the basis of data availability and the researcher's expert knowledge. Predictor variables commonly overlooked include alternative analysis scales for land-surface derivatives and additional remote sensing products. For this study, a pool of 412 potential predictors was assembled, which included qualitative location classes, elevation, land-surface derivatives (with a wide range of analysis scales), hydrologic indicators, as well …