Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Conditional Vulnerability Of Plant Diversity To Atmospheric Nitrogen Deposition Across The United States, Samuel M. Simkin, Edith B. Allen, William D. Bowman, Christopher M. Clark, Jayne Belnap, Matthew L. Brooks, Brian S. Cade, Scott L. Collins, Linda H. Geiser, Frank S. Gilliam, Sarah E. Jovan, Linda H. Pardo, Bethany K. Schulz, Carly J. Stevens, Katharine N. Suding, Heather L. Throop, Donald M. Waller Aug 2017

Conditional Vulnerability Of Plant Diversity To Atmospheric Nitrogen Deposition Across The United States, Samuel M. Simkin, Edith B. Allen, William D. Bowman, Christopher M. Clark, Jayne Belnap, Matthew L. Brooks, Brian S. Cade, Scott L. Collins, Linda H. Geiser, Frank S. Gilliam, Sarah E. Jovan, Linda H. Pardo, Bethany K. Schulz, Carly J. Stevens, Katharine N. Suding, Heather L. Throop, Donald M. Waller

Frank S. Gilliam

Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg …


Environmental And Climatic Constraints On Large-Scale Camelina Production In Eastern Arkansas, Benjamin Robert Tracy May 2017

Environmental And Climatic Constraints On Large-Scale Camelina Production In Eastern Arkansas, Benjamin Robert Tracy

Graduate Theses and Dissertations

Camelina sativa is a cold weather crop that is typically grown in semi-arid environments in the Western United States, usually as a spring crop, but sometimes during the winter. Research analyzing climate data and soil hydrology is important to better understand the environmental and terrain conditions necessary for Camelina farming wherever it is proposed for large-scale production. This study focused on various conditions and constraints pertaining to the potential for Camelina as a crop biofuel in Eastern Arkansas. Due to interest in the economic potential of crop biofuels in this area, and in particular the low input costs for Camelina, …


Standardized Research Protocols Enable Transdisciplinary Research Of Climate Variation Impacts In Corn Production Systems, E. J. Kladivko, M. J. Helmers, L. J. Abendroth, D. Herzmann, R. Lal, M. J. Castellano, D. S. Mueller, J. E. Sawyer, R. P. Anex, R. W. Arritt, B. Basso, J. V. Bonta, L. C. Bowling, R. M. Cruse, N. R. Fausey, J. R. Frankenberger, P. W. Gassman, A. J. Gassmann, C. L. Kling, A. Kravchenko, J. G. Lauer, F. E. Miguez, E. D. Nafziger, N. Nkongolo, M. O'Neal, L. B. Owens, P. R. Owens, P. Scharf, M. J. Shipitalo, J. S. Strock, M. B. Villamil Mar 2017

Standardized Research Protocols Enable Transdisciplinary Research Of Climate Variation Impacts In Corn Production Systems, E. J. Kladivko, M. J. Helmers, L. J. Abendroth, D. Herzmann, R. Lal, M. J. Castellano, D. S. Mueller, J. E. Sawyer, R. P. Anex, R. W. Arritt, B. Basso, J. V. Bonta, L. C. Bowling, R. M. Cruse, N. R. Fausey, J. R. Frankenberger, P. W. Gassman, A. J. Gassmann, C. L. Kling, A. Kravchenko, J. G. Lauer, F. E. Miguez, E. D. Nafziger, N. Nkongolo, M. O'Neal, L. B. Owens, P. R. Owens, P. Scharf, M. J. Shipitalo, J. S. Strock, M. B. Villamil

John E. Sawyer

The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multifaceted approach for developing new knowledge and understanding. A multistate, transdisciplinary project was begun in 2011 to study the potential for both mitigation and adaptation of corn-based cropping systems to climate variations. The team is measuring the baseline as well as change of the system's carbon (C), nitrogen (N), and water footprints, crop productivity, and pest pressure in response to existing and novel production practices. Nine states and 11 institutions are participating in the project, necessitating a well thought out approach to coordinating field …


Ergot And Loline Alkaloid Concentrations In Endophyte-Infected Tall Fescue Tillers, Rebecca L. Mcculley Feb 2017

Ergot And Loline Alkaloid Concentrations In Endophyte-Infected Tall Fescue Tillers, Rebecca L. Mcculley

Forage Climate Change Experiment Research Data

Approximately 40 tall fescue tillers were randomly collected and frozen from each of the 20 treatment plots.

Tillers were cut at 7.6 cm above ground level and tested for the presence of the Epichloe endophyte using an enzyme-linked immunosorbent assay.

Tillers from each plot were sorted into 'infected' vs 'uninfected' groups, lyophilized, and ground through a 1mm screen using a Cyclotec 1093 mill.

Ground material from the endophyte infected tillers was analyzed for ergot and loline alkaloids in the lab of Lowell Bush at the University of Kentucky, Plant and Soil Sciences Dept.

For details on alkaloid analyses see: McCulley …