Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Analysis Of Argonaute-Small Rna-Transcription Factor Circuits Controlling Leaf Development, John Steen Hoyer Dec 2017

Analysis Of Argonaute-Small Rna-Transcription Factor Circuits Controlling Leaf Development, John Steen Hoyer

Arts & Sciences Electronic Theses and Dissertations

Experimental studies of plant development have yielded many insights into gene regulation, revealing interactions between core transcriptional and post-transcriptional regulatory pathways present in all land plants. This work describes a direct connection between the three main small RNA-transcription factor circuits controlling leaf shape dynamics in the reference plant Arabidopsis thaliana. We used a high-throughput yeast 1-hybrid platform to identify factors directly binding the promoter of the highly specialized ARGONAUTE7 silencing factor. Two groups of developmentally significant microRNA-targeted transcription factors were the clearest hits from these screens, but transgenic complementation analysis indicated that their binding sites make only a small contribution …


Roles Of Peroxisomes And Peroxisome-Derived Products In Controlling Plant Growth And Stress Responses, Elizabeth May Frick Dec 2017

Roles Of Peroxisomes And Peroxisome-Derived Products In Controlling Plant Growth And Stress Responses, Elizabeth May Frick

Arts & Sciences Electronic Theses and Dissertations

The peroxisome is a vital organelle conserved through the entire eukaryotic lineage. In all examined species, peroxisomes are responsible for such essential processes as fatty acid beta-oxidation and metabolism of reactive oxygen species (ROS). In plants, peroxisomes have taken on additional specialized roles, such as production of some plant hormones and vitamins. In this work, I have uncovered novel factors regulating peroxisome number in model species Arabidopsis thaliana, and novel mechanisms governing how peroxisomes respond to salt stress. I discovered a role for Arabidopsis MAP KINASE17 (MPK17) as a negative regulator of peroxisome division that acts in the salt-stress response …


Phyllotactic Regularity Requires The Paf1 Complex In Arabidopsis, Kateryna Fal, Mengying Liu, Assem Duisembekova, Yassin Refahi, Elizabeth S. Haswell, Olivier Hamant Nov 2017

Phyllotactic Regularity Requires The Paf1 Complex In Arabidopsis, Kateryna Fal, Mengying Liu, Assem Duisembekova, Yassin Refahi, Elizabeth S. Haswell, Olivier Hamant

Biology Faculty Publications & Presentations

In plants, aerial organs are initiated at stereotyped intervals, both spatially (every 137° in a pattern called phyllotaxis) and temporally (at prescribed time intervals called plastochrons). To investigate the molecular basis of such regularity, mutants with altered architecture have been isolated. However, most of them only exhibit plastochron defects and/or produce a new, albeit equally reproducible, phyllotactic pattern. This leaves open the question of a molecular control of phyllotaxis regularity. Here, we show that phyllotaxis regularity depends on the function of VIP proteins, components of the RNA polymerase II-associated factor 1 complex (Paf1c). Divergence angles between successive organs along the …


Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra Oct 2017

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra

Biology Faculty Publications & Presentations

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream …


Plant Mechanosensitive Ion Channels: An Ocean Of Possibilities, Debarati Basu, Elizabeth S. Haswell Sep 2017

Plant Mechanosensitive Ion Channels: An Ocean Of Possibilities, Debarati Basu, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In plants, mechanosensitive channels have been implicated in the perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation and root mechanosensing - and it is likely that many other channels and functions await discovery. Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the conserved and …


Life Behind The Wall: Sensing Mechanical Cues In Plants, Olivier Hamant, Elizabeth S. Haswell Jul 2017

Life Behind The Wall: Sensing Mechanical Cues In Plants, Olivier Hamant, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.


Seeds As Artifacts Of Communities Of Practice: The Domestication Of Erect Knotweed In Eastern North America, Natalie Graham Mueller May 2017

Seeds As Artifacts Of Communities Of Practice: The Domestication Of Erect Knotweed In Eastern North America, Natalie Graham Mueller

Arts & Sciences Electronic Theses and Dissertations

Humans are the ultimate ecosystem engineers, and in transforming ecosystems we also change the selective environment for the plants and animals that live among us. The bodies and behaviors of domesticated plants and animals are thus rich artifacts of traditional ecological knowledge and practice. I study the morphology and behavior of domesticated plants as a proxy for ancient agricultural communities of practice. The transition from food procurement to food production is one of the most significant shifts in human history. I consider this process as the evolution and spread of a knowledge system. Domestication studies are usually focused on differentiating …


The Arabidopsis Kinesin-4, Fra1, Requires A High Level Of Processive Motility To Function Correctly, Anindya Ganguly, Logan Demott, Ram Dixit Apr 2017

The Arabidopsis Kinesin-4, Fra1, Requires A High Level Of Processive Motility To Function Correctly, Anindya Ganguly, Logan Demott, Ram Dixit

Biology Faculty Publications & Presentations

Processivity is important for kinesins that mediate intracellular transport. Structure–function analyses of N-terminal kinesins (i.e. kinesins comprising their motor domains at the N-terminus) have identified several non-motor regions that affect processivity in vitro. However, whether these structural elements affect kinesin processivity and function in vivo is not known. Here, we used an Arabidopsis thaliana kinesin-4, called Fragile Fiber 1 (FRA1, also known as KIN4A), which is thought to mediate vesicle transport, to test whether mutations that alter processivity in vitro lead to similar changes in behavior in vivo and whether processivity is important for the function of FRA1. We …


The Rna Polymerase-Associated Factor 1 Complex Is Required For Plant Touch Responses, Gregory S. Jensen, Kateryna Fal, Olivier Hamant, Elizabeth S. Haswell Jan 2017

The Rna Polymerase-Associated Factor 1 Complex Is Required For Plant Touch Responses, Gregory S. Jensen, Kateryna Fal, Olivier Hamant, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 …