Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

Center for Plant Science Innovation: Faculty and Staff Publications

Glycine max

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Soybean GmSaul1, A Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely Through Repressing The Activation Of GmMpk3, Jun-Mei Li, Mei-Yan Ye, Chaofeng Wang, Xiao-Han Ma, Ni-Ni Wu, Chen-Li Zhong, Yanjun Zhang, Ninghui Cheng, Paul A. Nakata, Lirong Zeng, Jian-Zhong Liu Mar 2023

Soybean GmSaul1, A Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely Through Repressing The Activation Of GmMpk3, Jun-Mei Li, Mei-Yan Ye, Chaofeng Wang, Xiao-Han Ma, Ni-Ni Wu, Chen-Li Zhong, Yanjun Zhang, Ninghui Cheng, Paul A. Nakata, Lirong Zeng, Jian-Zhong Liu

Center for Plant Science Innovation: Faculty and Staff Publications

E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virusinduced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, …


Expression Of Atwri1 And Atdgat1 During Soybean Embryo Development Influences Oil And Carbohydrate Metabolism, Cintia Lucía Arias, Truyen Quach, Tu Huynh, Hanh Nguyen, Ademar Moretti, Yu Shi, Ming Guo, Amira Rasoul, Kyujung Van, Leah Mchale, Thomas E. Clemente, Ana Paula Alonso, Chi Zhang Mar 2022

Expression Of Atwri1 And Atdgat1 During Soybean Embryo Development Influences Oil And Carbohydrate Metabolism, Cintia Lucía Arias, Truyen Quach, Tu Huynh, Hanh Nguyen, Ademar Moretti, Yu Shi, Ming Guo, Amira Rasoul, Kyujung Van, Leah Mchale, Thomas E. Clemente, Ana Paula Alonso, Chi Zhang

Center for Plant Science Innovation: Faculty and Staff Publications

Soybean oil is one of the most consumed vegetable oils worldwide. Genetic improvement of its concentration in seeds has been historically pursued due to its direct association with its market value. Engineering attempts aiming to increase soybean seed oil presented different degrees of success that varied with the genetic design and the specific variety considered. Understanding the embryo’s responses to the genetic modifications introduced, is a critical step to successful approaches. In this work, the metabolic and transcriptional responses to AtWRI1 and AtDGAT1 expression in soybean seeds were evaluated. AtWRI1 is a master regulator of fatty acid (FA) biosynthesis, and …


Towards The Development Of A Sustainable Soya Bean-Based Feedstock For Aquaculture, Hyunwoo Park, Steven Weier, Fareha Razvi, Pamela A. Peña, Neil A. Sims, Jennica Lowell, Cory Hungate, Karma Kissinger, Gavin Key, Paul Fraser, Jonathan Napier, Edgar B. Cahoon, Thomas Clemente Feb 2017

Towards The Development Of A Sustainable Soya Bean-Based Feedstock For Aquaculture, Hyunwoo Park, Steven Weier, Fareha Razvi, Pamela A. Peña, Neil A. Sims, Jennica Lowell, Cory Hungate, Karma Kissinger, Gavin Key, Paul Fraser, Jonathan Napier, Edgar B. Cahoon, Thomas Clemente

Center for Plant Science Innovation: Faculty and Staff Publications

Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic …


Expression Of Cyanobacterial Fbp/Sbpase In Soybean Prevents Yield Depression Under Future Climate Conditions, Iris H. Köhler, Ursula M. Ruiz-Vera, Andy Vanloocke, Michell L. Thomey, Thomas Clemente, Stephen P. Long, Donald R. Ort, Carl J. Bernacchi Jan 2017

Expression Of Cyanobacterial Fbp/Sbpase In Soybean Prevents Yield Depression Under Future Climate Conditions, Iris H. Köhler, Ursula M. Ruiz-Vera, Andy Vanloocke, Michell L. Thomey, Thomas Clemente, Stephen P. Long, Donald R. Ort, Carl J. Bernacchi

Center for Plant Science Innovation: Faculty and Staff Publications

Predictions suggest that current crop production needs to double by 2050 to meet global food and energy demands. Based on theory and experimental studies, overexpression of the photosynthetic enzyme sedoheptulose-1,7-bisphosphatase (SBPase) is expected to enhance C3 crop photosynthesis and yields. Here we test how expression of the cyanobacterial, bifunctional fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase) affects carbon assimilation and seed yield (SY) in a major crop (soybean, Glycine max). For three growing seasons, wild-type (WT) and FBP/SBPase-expressing (FS) plants were grown in the field under ambient (400 μmol mol−1) and elevated (600 μmol mol−1) CO2 concentrations [CO …