Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Inheritance Of Virulence In The Root Rot Pathogen Phytophthora Sojae, Sirjana Devi Shrestha Dec 2014

Inheritance Of Virulence In The Root Rot Pathogen Phytophthora Sojae, Sirjana Devi Shrestha

Electronic Thesis and Dissertation Repository

The oomycete Phytophthora sojae causes stem and root rot of soybean plants. The interaction of pathogen avirulence (Avr) and host resistance (R)-genes determine the disease outcome. The Avr3a mRNA transcript level is variable among P. sojae strains and determines virulence towards the R-gene Rps3a. To study the inheritance of virulence, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 and P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 (Avr3aACR10/Avr3a …


Effect Of Photoperiod On Redox Regulation Of Phenotypic Plasticity And Cellular Growth In Chlorella Vulgaris, Lauren E. Hollis Dec 2014

Effect Of Photoperiod On Redox Regulation Of Phenotypic Plasticity And Cellular Growth In Chlorella Vulgaris, Lauren E. Hollis

Electronic Thesis and Dissertation Repository

Photoautotrophs are predisposed to maintain a balance between light energy absorption with the capacity to consume this energy through metabolism. An imbalance in energy flow may be a consequence of increased light intensity and is sensed as modulation of excitation pressure (EP). Chlorella vulgaris acclimated to continuous high EP exhibits a yellow-green phenotype characterized by reduced chlorophyll content and high chlorophyll a/b ratio with reduced light-harvesting complex abundance relative to the dark green phenotype of low EP-acclimated cultures. Previous studies on acclimation to EP in green algae have been conducted under constant growth light. To determine the role of EP …


Thylakoid Phosphorylation And Cell Morphology In The Antarctic Psychrophile, Chlamydomonas Sp. Uwo241, Beth Szyszka-Mroz Dec 2014

Thylakoid Phosphorylation And Cell Morphology In The Antarctic Psychrophile, Chlamydomonas Sp. Uwo241, Beth Szyszka-Mroz

Electronic Thesis and Dissertation Repository

The unicellular green microalga, Chlamydomonas sp. UWO 241, was isolated from Lake Bonney, Antarctica. A unique characteristic of this algal strain is its inability to undergo state transitions combined with an altered thylakoid protein phosphorylation profile, which suggests the absence of LHCII phosphorylation, and preferential phosphorylation of a set of novel proteins. Examination of the unique phosphoproteins revealed that they are associated with a large pigment-protein supercomplex, which contains components of both photosystem I and the cytochrome b6/f complex and likely functions in cyclic electron flow (CEF).

The absence of phosphorylation of LHCII proteins, associated with state …


Arabidopsis Chromatin Remodeler Brahma: Its Functional Interplay With Polycomb Proteins And The Ref6 Histone Demethylase, Chenlong Li Dec 2014

Arabidopsis Chromatin Remodeler Brahma: Its Functional Interplay With Polycomb Proteins And The Ref6 Histone Demethylase, Chenlong Li

Electronic Thesis and Dissertation Repository

BRAHMA (BRM) is a SWI/SNF-type chromatin remodeling ATPase that plays an important role in regulation of gene expression. Tri-methylation of lysine 27 on histone H3 (H3K27me3) is a histone modification that is associated with transcriptionally repressed genes and catalyzed by Polycomb Group (PcG) proteins. BRM has been proposed to antagonize the function of PcG proteins but the underlying molecular mechanism is unclear. To understand how BRM regulates the function of PcG proteins during plant development, a genome-wide analysis of H3K27me3 in brm mutant was performed using chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Loss of BRM leads to increased …


Protein Body Biogenesis And Utility In Recombinant Protein Production In Nicotiana Benthamiana, Reza Saberianfar Nov 2014

Protein Body Biogenesis And Utility In Recombinant Protein Production In Nicotiana Benthamiana, Reza Saberianfar

Electronic Thesis and Dissertation Repository

Protein bodies (PBs) are endoplasmic reticulum (ER) derived organelles found in seeds whose function is to accumulate seed storage proteins. It was shown that PB formation is not limited to seeds, and green fluorescent protein (GFP) fused to either elastin-like polypeptide (ELP), hydrophobin-I (HFBI) or Zera® fusion tags induces PBs in leaves of Nicotiana benthamiana. The mechanism by which fusion tags induce PBs is not well understood. To address how PBs form and develop in plant leaves, I studied the factors involved in their formation including recombinant protein concentration, effect of the fusion tags, PB sequestration patterns and …


Two Spotted Spider Mite (Tetranychus Urticae) Selection To Arabidopsis Thaliana, Huzefa Ratlamwala Aug 2014

Two Spotted Spider Mite (Tetranychus Urticae) Selection To Arabidopsis Thaliana, Huzefa Ratlamwala

Electronic Thesis and Dissertation Repository

Spider mite feeding on A. thaliana induces the production of indole glucosinolates (IGs), plant secondary metabolites that negatively affect mite performance. In this study I conducted selection experiments on A. thaliana with varying levels of IGs, to determine if mites could adapt to IGs and other defense compounds. After 12 months, mites reared on host with IGs performed significantly better on A. thaliana than mites maintained on beans. However, an adaptation cost was detected between selected mite lines and their ancestral host. The qRT-PCR data on different mite lines revealed that the detoxification genes previously identified may only be involved …


Identification And Characterization Of Cysteine Protease Genes In Tobacco For Use In Recombinant Protein Production, Kishor Duwadi Aug 2014

Identification And Characterization Of Cysteine Protease Genes In Tobacco For Use In Recombinant Protein Production, Kishor Duwadi

Electronic Thesis and Dissertation Repository

Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal based systems. The main technical challenge during this process is to produce sufficient level of proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of a human therapeutic protein interleukin (IL) -10 produced in transgenic tobacco leaves was found to be below the critical level, and is potentially due to degradation by tobacco cysteine proteases (CysPs). …


Functional Analysis Of Two Brassinosteroid Responsive, Putative Calmodulin-Binding Proteins 60 (Cbp60s) In Arabidopsis Thaliana, Purvikalyan Pallegar Apr 2014

Functional Analysis Of Two Brassinosteroid Responsive, Putative Calmodulin-Binding Proteins 60 (Cbp60s) In Arabidopsis Thaliana, Purvikalyan Pallegar

Electronic Thesis and Dissertation Repository

Brassinosteroids (BRs) have remarkable ability to increase stress tolerance in plants. Investigations to understand the molecular mechanisms underlying BR-mediated stress tolerance resulted in identification of genes belonging to the family calmodulin binding protein X (CBPX). The present study was focused on studying the role of CBPX1 and CBPX2 in BR mediated stress tolerance and functional characterization using a reverse genetic approach. The upregulation of CBPX1 and CBPX2 by BR and stress noted in publicly available AtGenexpress datasets and by qRT-PCR analysis strongly suggests that these are BR responsive genes and functional analysis of T-DNA insertion mutants showed salt stress related …


The Effects Of Ocean Acidification And Eutrophication On The Growth, Lipid Composition And Toxicity Of The Marine Raphidophyte Heterosigma Akashiwo., Julia Rose Matheson Apr 2014

The Effects Of Ocean Acidification And Eutrophication On The Growth, Lipid Composition And Toxicity Of The Marine Raphidophyte Heterosigma Akashiwo., Julia Rose Matheson

Electronic Thesis and Dissertation Repository

Anthropogenic forcing, such as ocean acidification caused by rising carbon dioxide emissions, and eutrophication due to increased nutrient loadings in run-off, are causing major changes to the biogeochemistry of the oceans. As a consequence, coastal phytoplankton are susceptible to altered biogeochemical environments. This study examined the effect of a lower pH and increased levels of nutrients on the common coastal harmful alga, Heterosigma akashiwo. Growth rates, maximal cell yields, neutral lipid accumulation and toxicity of cells grown under various pH and nutrients regimes were measured. H. akashiwo growth was near maximal when grown at lower pH levels. There was …


Growth Of The Marine Fish-Killing Phytoflagellate, Heterosigma Akashiwo Under Emerging Coastal Regimes: Temperature, Eutrophication And Ocean Acidification, Cayla M. Bronicheski Jan 2014

Growth Of The Marine Fish-Killing Phytoflagellate, Heterosigma Akashiwo Under Emerging Coastal Regimes: Temperature, Eutrophication And Ocean Acidification, Cayla M. Bronicheski

Electronic Thesis and Dissertation Repository

Coastal oceans are fundamental to human economies, nutrition and recreation. Anthropogenic stressors have led to the acceleration of the nitrogen cycle, the accumulation of inorganic carbon in the earth’s atmosphere, the loss of UV-scavenging upper atmospheric ozone and the overall accumulation of deep elements from the earth’s crust to surface exposure. These changes have caused ocean acidification and eutrophication events in coastal waters and the impacts of these events on primary production and ocean biodiversity are not yet fully understood.

This study examined the effects of predicted future ocean conditions (salinity, temperature, reduced seawater pH and modified nitrogen supplies), on …