Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Reciprocal Effect Of Parental Lines On The Physiological Potential And Seed Composition Of Corn Hybrid Seeds, Juliana F. Santos, Lynnette M. A. Dirk, A. Bruce Downie, Mauricio F. G. Sanches, Roberval D. Vieira Sep 2017

Reciprocal Effect Of Parental Lines On The Physiological Potential And Seed Composition Of Corn Hybrid Seeds, Juliana F. Santos, Lynnette M. A. Dirk, A. Bruce Downie, Mauricio F. G. Sanches, Roberval D. Vieira

Horticulture Faculty Publications

Obtaining corn hybrid seeds (Zea mays L.) with high vigour depends on the parental lines and the direction of the cross, and this relates to seed desiccation tolerance and composition. This research studied reciprocal crosses between pairs of proprietary, elite parent lines (L1 and L5; L2 and L4) producing hybrid seeds with different qualities attempting to correlate vigour with seed composition, focusing on storage proteins, starch and soluble sugar amounts. Four corn hybrid seed lots produced from reciprocal crosses were compared (HS 15 with HS 51, and HS 24 with HS 42) by assessing germination, vigour, and seedling emergence …


Positioning Of The Scrambled Receptor Requires Udp-Glc:Sterol Glucosyltransferase 80b1 In Arabidopsis Roots, Victoria G. Pook, Meera Nair, Kookhui Ryu, James C. Arpin, John Schiefelbein, Kathrin Schrick, Seth Debolt Jul 2017

Positioning Of The Scrambled Receptor Requires Udp-Glc:Sterol Glucosyltransferase 80b1 In Arabidopsis Roots, Victoria G. Pook, Meera Nair, Kookhui Ryu, James C. Arpin, John Schiefelbein, Kathrin Schrick, Seth Debolt

Horticulture Faculty Publications

The biological function of sterol glucosides (SGs), the most abundant sterol derivatives in higher plants, remains uncertain. In an effort to improve our understanding of these membrane lipids we examined phenotypes exhibited by the roots of Arabidopsis (Arabidopsis thaliana) lines carrying insertions in the UDP-Glc:sterol glucosyltransferase genes, UGT80A2 and UGT80B1. We show that although ugt80A2 mutants exhibit significantly lower levels of total SGs they are morphologically indistinguishable from wild-type plants. In contrast, the roots of ugt80B1 mutants are only deficient in stigmasteryl glucosides but exhibit a significant reduction in root hairs. Sub-cellular investigations reveal that the plasma membrane …