Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

PDF

Washington University in St. Louis

2017

Light responses

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra Oct 2017

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra

Biology Faculty Publications & Presentations

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream …