Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Pathology

University of Kentucky

Series

Arabidopsis

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Mono- And Digalactosyldiacylglycerol Lipids Function Nonredundantly To Regulate Systemic Acquired Resistance In Plants, Qing-Ming Gao, Keshun Yu, Ye Xia, M. B. Shine, Caixia Wang, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo Dec 2014

Mono- And Digalactosyldiacylglycerol Lipids Function Nonredundantly To Regulate Systemic Acquired Resistance In Plants, Qing-Ming Gao, Keshun Yu, Ye Xia, M. B. Shine, Caixia Wang, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo

Plant Pathology Faculty Publications

The plant galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO). Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR). In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA) and glycerol-3-phosphate (G3P) that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, …


A Novel Partitivirus That Confers Hypovirulence On Plant Pathogenic Fungi, Xueqiong Xiao, Jiasen Cheng, Jinghua Tang, Yanping Fu, Daohong Jiang, Timothy S. Baker, Said A. Ghabrial, Jiatao Xie Sep 2014

A Novel Partitivirus That Confers Hypovirulence On Plant Pathogenic Fungi, Xueqiong Xiao, Jiasen Cheng, Jinghua Tang, Yanping Fu, Daohong Jiang, Timothy S. Baker, Said A. Ghabrial, Jiatao Xie

Plant Pathology Faculty Publications

Members of the family Partitiviridae have bisegmented double-stranded RNA (dsRNA) genomes and are not generally known to cause obvious symptoms in their natural hosts. An unusual partitivirus, Sclerotinia sclerotiorum partitivirus 1 (SsPV1/WF-1), conferred hypovirulence on its natural plant-pathogenic fungal host, Sclerotinia sclerotiorum strain WF-1. Cellular organelles, including mitochondria, were severely damaged. Hypovirulence and associated traits of strain WF-1 and SsPV1/WF-1 were readily cotransmitted horizontally via hyphal contact to different vegetative compatibility groups of S. sclerotiorum and interspecifically to Sclerotinia nivalis and Sclerotinia minor. S. sclerotiorum strain 1980 transfected with purified SsPV1/WF-1 virions also exhibited hypovirulence and associated traits similar …


Sag101 Forms A Ternary Complex With Eds1 And Pad4 And Is Required For Resistance Signaling Against Turnip Crinkle Virus, Shifeng Zhu, Rae-Dong Jeong, Srivathsa C. Venugopal, Ludmila Lapchyk, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo Nov 2011

Sag101 Forms A Ternary Complex With Eds1 And Pad4 And Is Required For Resistance Signaling Against Turnip Crinkle Virus, Shifeng Zhu, Rae-Dong Jeong, Srivathsa C. Venugopal, Ludmila Lapchyk, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo

Plant Pathology Faculty Publications

EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome …


Enhanced Disease Susceptibility 1 And Salicylic Acid Act Redundantly To Regulate Resistance Gene-Mediated Signaling, Srivathsa C. Venugopal, Rae-Dong Jeong, Mihir Kumar Mandal, Shifeng Zhu, A. C. Chandra-Shekara, Ye Xia, Matthew Hersh, Arnold J. Stromberg, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo Jul 2009

Enhanced Disease Susceptibility 1 And Salicylic Acid Act Redundantly To Regulate Resistance Gene-Mediated Signaling, Srivathsa C. Venugopal, Rae-Dong Jeong, Mihir Kumar Mandal, Shifeng Zhu, A. C. Chandra-Shekara, Ye Xia, Matthew Hersh, Arnold J. Stromberg, Duroy Navarre, Aardra Kachroo, Pradeep Kachroo

Plant Pathology Faculty Publications

Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or …