Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Breeding and Genetics

Brachypodium

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Uncovering The Genetic Basis For Biofuel-Related Traits In Brachypodium Distachyon, Scott J. Lee Nov 2016

Uncovering The Genetic Basis For Biofuel-Related Traits In Brachypodium Distachyon, Scott J. Lee

Doctoral Dissertations

Biofuels derived from plant biomass present a promising avenue to address the negative aspects of fossil-fuel dependence. The sustainability of biofuel production relies in part on the efficient degradation of lignocellulosic feedstocks. In order to capitalize on the potential of lignocellulosic biofuels, the genes underlying natural genetic variation for conversion efficiency must be determined. We have developed a robust and high-throughput assay to measure feedstock quality using the anaerobic bacterium Clostridium phytofermentans. We have measured biomass accumulation phenotypes and utilized this assay to perform quantitative trait locus (QTL) mapping and a genome-wide association study (GWAS) in the model grass species …


Comparative Genome Analysis Between Agrostis Stolonifera And Members Of The Pooideae Subfamily Including Brachypodium Distachyon, Loreto P. Araneda Jan 2011

Comparative Genome Analysis Between Agrostis Stolonifera And Members Of The Pooideae Subfamily Including Brachypodium Distachyon, Loreto P. Araneda

Masters Theses 1911 - February 2014

Understanding of grass genome structure and evolution has been significantly advanced through comparative genomics. The genomes of most cool-season forage and turf grasses, belonging to the Pooideae subfamily of the grasses, remain understudied. Creeping bentgrass (Agrostis stolonifera) is one of the most important cool-season turfgrasses due to its low mowing tolerance and aggressive growth habit. An RFLP genetic map of creeping bentgrass using 229 RFLP markers derived from cereal and creeping bentgrass EST-RFLP probes was constructed for a comparative genome analysis. This genetic map was compared with those of perennial ryegrass, oat, wheat, and rice. Large-scale chromosomal rearrangements …