Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Breeding and Genetics

Dartmouth College

Renewable and green energy

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Bioenergy And African Transformation, Lee R. Lynd, Mariam Sow, Annie Chimphango, Luis Cortez, Carlos H. Brito Cruz, Mosad Elmissiry, Mark Laser Aug 2015

Bioenergy And African Transformation, Lee R. Lynd, Mariam Sow, Annie Chimphango, Luis Cortez, Carlos H. Brito Cruz, Mosad Elmissiry, Mark Laser

Dartmouth Scholarship

Among the world’s continents, Africa has the highest incidence of food insecurity and poverty and the highest rates of population growth. Yet Africa also has the most arable land, the lowest crop yields, and by far the most plentiful land resources relative to energy demand. It is thus of interest to examine the potential of expanded modern bioenergy production in Africa. Here we consider bioenergy as an enabler for development, and provide an overview of modern bioenergy technologies with a comment on application in an Africa context. Experience with bioenergy in Africa offers evidence of social benefits and also some …


Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring May 2015

Anaerobic Detoxification Of Acetic Acid In A Thermophilic Ethanologen, A Joe Shaw, Bethany B. Miller, Stephen R. Rogers, William Robert Kenealy, Alex Meola, Ashwini Bhandiwad, W Ryan Sillers, Indraneel Shikhare, David Hogsett, Christopher Herring

Dartmouth Scholarship

The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield. We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.

.


The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd Oct 2014

The Exometabolome Of Clostridium Thermocellum Reveals Overflow Metabolism At High Cellulose Loading, Evert K. Holwerda, Philip G. Thorne, Daniel G. Olson, Daniel Amador-Noguez, Nancy L. Engle, Timothy J. Tschaplinski, Johannes P. Van Dijken, Lee R. Lynd

Dartmouth Scholarship

BackgroundClostridium thermocellum is a model thermophilic organism for the production of biofuels from lignocellulosic substrates. The majority of publications studying the physiology of this organism use substrate concentrations of ≤10 g/L. However, industrially relevant concentrations of substrate start at 100 g/L carbohydrate, which corresponds to approximately 150 g/L solids. To gain insight into the physiology of fermentation of high substrate concentrations, we studied the growth on, and utilization of high concentrations of crystalline cellulose varying from 50 to 100 g/L by C. thermocellum. .


Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd Nov 2013

Tracking The Cellulolytic Activity Of Clostridium Thermocellum Biofilms, Alexandru Dumitrache, Gideon M. Wolfaardt, David Allen, Steven N. Liss, Lee R. Lynd

Dartmouth Scholarship

Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics.