Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Life Sciences

Identification And Characterization Of Isoflavone Reductase Family Members In Soybean, Negin Azizkhani Mar 2024

Identification And Characterization Of Isoflavone Reductase Family Members In Soybean, Negin Azizkhani

Electronic Thesis and Dissertation Repository

Soybean’s yield is threatened by Phytophthora sojae, a pathogen responsible for stem and root rot disease. Glyceollins, unique antimicrobial agents specific to soybeans in partially preventing P. sojae infection, are derived from the isoflavonoid branch of the general phenylpropanoid pathway. One pivotal enzyme exclusively involved in glyceollin synthesis in soybean is the isoflavone reductase (GmIFR), which catalyzes the 2'-hydroxydaidzein conversion to 2'-hydroxy-2,3-dihydrodaidzein as a precursor for glyceollin biosynthesis. To comprehensively identify all members of the GmIFR gene family within the soybean genome, keyword and blast protein searches were conducted, identifying 98 putative GmIFRs. Among these candidates, …


Survey And Prevalence Of Palmer Amaranth Herbicide Resistance In South Carolina, Mitchell Williams Aug 2023

Survey And Prevalence Of Palmer Amaranth Herbicide Resistance In South Carolina, Mitchell Williams

All Theses

Palmer amaranth is a troublesome weed for growers to control, not only due to its aggressive growth characteristics that limit row-crop production, but because of its resistance to different herbicide modes of action. The first case of herbicide resistance in Palmer amaranth was detected in 1989 and has since grown to nine different herbicide classes throughout the United States. New herbicide modes of action have not been developed since the 1980s, so proper stewardship of the remaining modes of action is important for effective control of Palmer amaranth. Increased herbicide resistance from states bordering South Carolina have been reported; therefore, …


Functional Analysis Of Soybean Proteinase Inhibitor Genes And Cyst Nematode-Inducible Synthetic Promoters For Insects And Nematode-Resistance In Plants, Mst Shamira Sultana Dec 2022

Functional Analysis Of Soybean Proteinase Inhibitor Genes And Cyst Nematode-Inducible Synthetic Promoters For Insects And Nematode-Resistance In Plants, Mst Shamira Sultana

Doctoral Dissertations

Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Soybean (Glycine max) contains two trypsin inhibitors (TIs): Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. In addition to the three known TIs (KTI1, KTI2 and KTI3), novel inhibitors KTI5, KTI7, and BBI5 were identified in soybean. Their functional role was further examined by overexpression in soybean and Arabidopsis. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory …


Impact Of New Technologies On Weed Control In Louisiana Rice Production, David C. Walker Mar 2022

Impact Of New Technologies On Weed Control In Louisiana Rice Production, David C. Walker

LSU Doctoral Dissertations

Field studies were conducted in 2018-2021 at the LSU Agricultural Center’s H.R. Caffey Rice Research Station (RRS) near Crowley, LA, and the Dean Lee Research and Extension Center (DLREC) near Alexandria, LA to evaluate off-target florpyrauxifen movement on soybean. Soybean was treated with florpyrauxifen at the V4-V5 or R1-R2 growth stages. Soybean injury was evaluated at 1, 7, 14, and 28 days after treatment (DAT) and soybean plant height (cm) was recorded at 7, 14, and 28 DAT. At soybean maturity, yield and individual yield components were subjected to regression analysis to describe the relationship between florpyrauxifen rate and soybean …


Screening And Breeding Soybean For Flood Tolerance, Maria Roberta De Oliveira May 2021

Screening And Breeding Soybean For Flood Tolerance, Maria Roberta De Oliveira

Graduate Theses and Dissertations

Waterlogging can be detrimental to soybean [Glycine max (L.) Merr.] growth and development, with effects ranging from chlorosis and stunting to yield loss and plant death. Soybean responses to, and the effects of, waterlogging are dependent on the growth stage of the plant at the initiation of waterlogging. The objectives of this study were: (1) to assess the effectiveness of Genomic Selection (GS), Marker Assisted Selection (MAS) and Phenotypic Selection for flood tolerance at the progeny row stage as compared to random selection, for the development of high-yielding flood-tolerant lines; and (2) to compare field-screening and hydroponic greenhouse screening methodologies …


Soybean Root Exudates Increase The Physiological Diversity Of Bacteria In Cadmium-Treated Soil, Leily Kazemi Movahed Feb 2020

Soybean Root Exudates Increase The Physiological Diversity Of Bacteria In Cadmium-Treated Soil, Leily Kazemi Movahed

Electronic Thesis and Dissertation Repository

Three soybean cultivars with contrasting retention of cadmium (Cd) in the root were grown in Cd-spiked nutrient solution and used to determine that symplastic compartmentalization of Cd in roots is probably responsible for retention of Cd in roots. Roots of the low Cd-accumulator AC Hime treated with 30 mM Cd exuded up to 10-fold higher concentrations of citric, succinic, fumaric and malic acids into the hydroponic solution when compared to control; concentrations of the same organic acids from the high Cd-accumulator Westag 97 increased by up to 3-fold. The same cultivars were grown in Cd-spiked soil and the physiological profiles …


Characterization Of Bacterial Endophytes Isolated From Brassica Carinata And Their Potential Use To Decrease Nutrient Requirements In Crops, Alex Soupir Jan 2020

Characterization Of Bacterial Endophytes Isolated From Brassica Carinata And Their Potential Use To Decrease Nutrient Requirements In Crops, Alex Soupir

Electronic Theses and Dissertations

Bacterial endophytes have the capability to enhance plant growth by producing plant growth hormones, solubilizing phosphates, suppressing pathogenic fungi, and reducing plant stress hormones. These capabilities make them desirable limiting the amount of nutrients and pesticides that are applied to crops. Through these assays and isolations, it is possible to identify novel bacterial species. In-vitro testing had shown 9 of the 20 isolates possess the ability to produce indole-3-acetic acid (IAA) with Pantoea agglomerans BC09 producing a concentration of 30.2 ng/μl over 4 days. BC09, Bacillus subilis BC10, and Pantoea sp. BC12 were able to solubilize calcium phosphate, 7 endophytes …


Physiological Characterization Of The Soynam Parental Lines Under Field Conditions, Akshita Mishra Dec 2018

Physiological Characterization Of The Soynam Parental Lines Under Field Conditions, Akshita Mishra

Graduate Theses and Dissertations

The narrow genetic pool of soybean (Glycine max L. Merr.) in North America can limit its future yield gains. Among the worldwide germplasm collection of 45,000 unique landraces, only 80 contribute 99% to the collective parentage of North American soybean cultivars. Among these 80 landraces, just 17 contribute to 86% of the collective parentage of the modern cultivars. The Soybean Nested Association Mapping population (SoyNAM) was therefore developed with the objective of diversifying the soybean gene pool. Forty diverse soybean genotypes from maturity groups (MG) 1 through 5 were crossed with a common MG 3 parent to develop 40 recombinant …


Regulation Of Local Auxin Metabolism During Soybean Nodule Development, Suresh Damodaran Jan 2018

Regulation Of Local Auxin Metabolism During Soybean Nodule Development, Suresh Damodaran

Electronic Theses and Dissertations

Legume-rhizobia symbiosis leads to the development of secondary root organs called nodules. Rhizobia bacteria housed inside nodules assimilate atmospheric nitrogen and convert them into plant usable forms thereby reducing the need for fertilizer application in crop legumes like soybean. Nodule development is a coordinated process orchestrated by multiple plant hormones. In soybean, the auxin responsive gene expression was detected in nodule primordia and in the periphery of mature nodules, primarily in nodule vasculature. Auxin hypersensitivity reduces nodule formation in soybean and also polar auxin transport inhibition at the site of nodule development is not crucial for determinate nodule formation. Therefore, …


Gmmyb176 Interactome And Regulation Of Isoflavonoid Biosynthesis In Soybean, Arun Kumaran Anguraj Vadivel Jun 2017

Gmmyb176 Interactome And Regulation Of Isoflavonoid Biosynthesis In Soybean, Arun Kumaran Anguraj Vadivel

Electronic Thesis and Dissertation Repository

MYB transcription factors are one of the largest transcription factor families characterized in plants. They are classified into four types: R1 MYB, R2R3 MYB, R3 MYB and R4 MYB. GmMYB176 is an R1MYB transcription factor that regulates Chalcone synthase (CHS8) gene expression and isoflavonoid biosynthesis in soybean. Silencing of GmMYB176 suppressed the expression of the GmCHS8 gene and reduced the accumulation of isoflavonoids in soybean hairy roots. However, overexpression of GmMYB176 does not alter either GmCHS8 gene expression or isoflavonoid levels suggesting that GmMYB176 alone is not sufficient for GmCHS8 gene regulation. I hypothesized that GmMYB176 acts cooperatively with another …


Increasing Renewable Oil Content And Utility, William Richard Serson Jan 2017

Increasing Renewable Oil Content And Utility, William Richard Serson

Theses and Dissertations--Plant and Soil Sciences

Since the dawn of agriculture man has been genetically modifying crop plants to increase yield, quality and utility. In addition to selective breeding and hybridization we can utilize mutant populations and biotechnology to have greater control over crop plant modification than ever before. Increasing the production of plant oils such as soybean oil as a renewable resource for food and fuel is valuable. Successful breeding for higher oil levels in soybean, however, usually results in reduced protein, a second valuable seed component. We show that by manipulating a highly active acyl-CoA: diacylglycerol acyltransferase (DGAT) the hydrocarbon flux to oil in …


Dissecting Salt Tolerance In Soybean By Profiling Differential Physiological Responses Under Salt Stress, Jade Amber Newsome Dec 2016

Dissecting Salt Tolerance In Soybean By Profiling Differential Physiological Responses Under Salt Stress, Jade Amber Newsome

Graduate Theses and Dissertations

Saline soils are common worldwide and limit the yield potential of many crops. Plants respond in a variety of ways to the stress imposed by saline soils. Plants under salt stress must first sense their surroundings and transmit a signal alerting the rest of the plant to the saline conditions. Salt tolerance in soybeans is typically defined by exclusion of chloride ions from foliar tissues. Though differences in ion uptake among soybean genotypes is well documented, the key mechanisms employed by tolerant cultivars to cope with salt stress on the whole-plant level are still largely unknown. Objectives of the current …


Identification And Characterization Of The Isoflavonoid-Specific Prenyltransferase Gene Family To Prevent Stem And Root Rot In Soybean, Arjun Sukumaran Sep 2016

Identification And Characterization Of The Isoflavonoid-Specific Prenyltransferase Gene Family To Prevent Stem And Root Rot In Soybean, Arjun Sukumaran

Electronic Thesis and Dissertation Repository

Soybean is one of the most predominantly grown legumes worldwide, however, one deterrent to maximizing its yield is the pathogen, Phytophthora sojae, which causes stem and root rot disease. Many strategies have been implemented to combat this pathogen such as use of pesticides and certain agricultural practices. However, these have been largely ineffective in completely preventing P. sojae infection. An alternative strategy would be to improve the innate resistance of soybean by promoting increased glyceollin production. Glyceollins are soybean-specific antimicrobial agents which are derived from the isoflavonoid branch of the general phenylpropanoid pathway. Soybeans produce 3 forms of glyceollin: …


High Throughput Phenotypic Evaluation Of Drought-Related Traits In Soybean, Hua Bai Aug 2016

High Throughput Phenotypic Evaluation Of Drought-Related Traits In Soybean, Hua Bai

Graduate Theses and Dissertations

Drought limits crop growth and yield in soybean. Rapid and effective methods of screening large numbers of soybean lines for drought tolerance are urgently needed. Two experiments were conducted to evaluate the effects of drought in soybean during reproductive stages. In the first experiment five genotypes from maturity groups 2 through 5 were tested under well-irrigated and drought conditions. Beginning at R5, leaf samples were taken for nitrogen concentration analysis. Pictures were taken across the top of each plot to determine the intensity of greenness using the Dark Green Color Index (DGCI). Aerial photographs were also taken to determine aerial …


Planting The Chalcone Reductase Family Tree: Identification And Characterization Of Chalcone Reductase Genes In Soybean, Caroline Julia Sepiol Aug 2015

Planting The Chalcone Reductase Family Tree: Identification And Characterization Of Chalcone Reductase Genes In Soybean, Caroline Julia Sepiol

Electronic Thesis and Dissertation Repository

Soybean (Glycine max [L.] Merr) is an important crop grown in Canada, generating $2.4 billion in sales. Though this number may be promising, soybean farmers lose about $50 million worth of yield annually due to root and stem rot disease caused by Phytophthora sojae. Many strategies have been developed to combat the infection; however, these methods are prohibitively expensive. A ‘cost effective’ approach to this problem is to select a trait naturally found in soybean that can increase resistance. One such trait is the increased production of root glyceollins. One of the key enzymes exclusively involved in glyceollin …


Soybean Isoflavonoid Biosynthesis: Constituents And Circumstance At The Transcriptomic And Molecular Levels, Mehran Dastmalchi Jan 2015

Soybean Isoflavonoid Biosynthesis: Constituents And Circumstance At The Transcriptomic And Molecular Levels, Mehran Dastmalchi

Electronic Thesis and Dissertation Repository

Isoflavonoids are specialized metabolites, almost exclusive to the legume family of plants. They are actors in symbiosis with nitrogen-fixing bacteria and in plant stress response. Isoflavonoids are noted for their human health benefits. Isoflavonoid content in legumes has proven to be a complex trait. The goal of the present research is to determine the mechanisms underlying isoflavonoid biosynthesis in soybean.

The first approach was to unravel the genetic factors of isoflavonoid biosynthesis. A branch-point enzyme of the phenylpropanoid pathway, chalcone isomerase (CHI), catalyzes the reaction producing flavanones, the nucleus for many downstream metabolites such as isoflavonoids. I identified twelve soybean …


Selecting Drought Tolerant Soybean Genotypes Using Qtls Associated With Shoot Ureide And Nitrogen Concentrations, Alejandro Bolton Aug 2013

Selecting Drought Tolerant Soybean Genotypes Using Qtls Associated With Shoot Ureide And Nitrogen Concentrations, Alejandro Bolton

Graduate Theses and Dissertations

In soybean, nitrogen fixation is more sensitive to drought than other physiological processes like photosynthesis. The sensitivity of nitrogen fixation to drought has been associated with high shoot concentrations of ureide and nitrogen under well-watered conditions. Previous research by Hwang et al. (2013) detected quantitative trait loci (QTLs) in a KS4895 by Jackson population associated with shoot ureide and nitrogen concentrations. The present research evaluated the use of these QTLs in selecting genotypes with drought tolerant nitrogen fixation. Our objectives were to compare actual versus expected phenotype of recombinant inbreed lines (RILs) selected using molecular markers, and to evaluate the …


Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali Jul 2013

Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali

Electronic Thesis and Dissertation Repository

I identified members of the Cyclophilin (CYP) gene family in soybean (Glycine max) and characterized the GmCYP1, one of the members of soybean CYP. CYPs belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. PPIase catalyzes the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. After extensive data mining, I identified 62 different CYP genes in soybean (GmCYP1 to GmCYP62), of which 8 are multi-domain proteins and 54 are single domain proteins. At least 25% of the GmCYP genes are expressed in soybean. GmCYP1 …