Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

2019

Sorghum

Department of Agronomy and Horticulture: Faculty Publications

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Engineering Linear, Branched-Chain Triterpene Metabolism In Monocots, Chase Kempinski, Zuodong Jiang, Garrett Zinck, Shirley J. Sato, Zhengxiang Ge, Thomas E. Clemente, Joseph Chappell Jan 2019

Engineering Linear, Branched-Chain Triterpene Metabolism In Monocots, Chase Kempinski, Zuodong Jiang, Garrett Zinck, Shirley J. Sato, Zhengxiang Ge, Thomas E. Clemente, Joseph Chappell

Department of Agronomy and Horticulture: Faculty Publications

Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene …