Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 47

Full-Text Articles in Life Sciences

The Evolution And Development Of Awns In The Grass Subfamily Pooideae, Erin L. Patterson Mar 2024

The Evolution And Development Of Awns In The Grass Subfamily Pooideae, Erin L. Patterson

Doctoral Dissertations

This research focuses on a specific example of replicated evolution: the grass awn. Awns are typically extensions of the lemma, but may also appear on glumes or paleas. The lemma is a leaf-like organ on the exterior of the grass flower, the glumes are a pair of bracts subtending the basic unit of grass inflorescences, the spikelet, and the palea is the floral organ opposite the lemma. Awns are often described as "hair-" or "bristle-" like, but appear in many different shapes. Many awns are “twisted & geniculate", in which the awn has two sections, a lower twisted column, and …


Characterization Of Radiotolerance In Potato And Development Of A Gamma Radiation Phytosensor., Robert Graham Sears Dec 2023

Characterization Of Radiotolerance In Potato And Development Of A Gamma Radiation Phytosensor., Robert Graham Sears

Doctoral Dissertations

As humans pursue space travel and nuclear energy, the risk of harm from ionizing radiation increases. On Earth or in space, plants are essential to our personal and environmental health. Plants serve as sentinels, bioremediators and food sources in areas of high ionizing radiation, therefore it is essential to understand how ionizing radiation affects plant biology. This work aimed to understand plant responses to ionizing radiation in the potato chassis and apply that knowledge to generate novel phenotypes for nuclear energy and space applications. The first gamma radiation phytosensor was developed for monitoring at standoff distances greater than three meters. …


Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Regulation Of Protein Synthesis In Arabidopsis Thaliana Through A Bioinformatic And Mathematical Lens, Ricardo Andres Urquidi Camacho Dec 2023

Regulation Of Protein Synthesis In Arabidopsis Thaliana Through A Bioinformatic And Mathematical Lens, Ricardo Andres Urquidi Camacho

Doctoral Dissertations

Organisms exist under constantly varying environmental and internal conditions, which necessitate the differential regulation of gene expression. To synthesize proteins, the ribosome translates the information encoded in the nucleotide sequence of an mRNA into the final, functional amino acid sequence. Knockouts of ribosomal proteins lead to lethality. One such protein is the ribosomal protein 6 of the small subunit (eS6/RPS6). We confirmed that the knockout of either one of two eS6 paralogs in Arabidopsis leads to stunted growth and chlorosis. Here, these phenotypes have been further characterized in seedlings by precisely quantifying the ribosome loading of mRNAs as well as …


Functional Analysis Of Soybean Proteinase Inhibitor Genes And Cyst Nematode-Inducible Synthetic Promoters For Insects And Nematode-Resistance In Plants, Mst Shamira Sultana Dec 2022

Functional Analysis Of Soybean Proteinase Inhibitor Genes And Cyst Nematode-Inducible Synthetic Promoters For Insects And Nematode-Resistance In Plants, Mst Shamira Sultana

Doctoral Dissertations

Proteinase inhibitors (PIs) from legumes have the potential for use as protectants in response to pests and pathogens. Soybean (Glycine max) contains two trypsin inhibitors (TIs): Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). In this study, the possible role of soybean TIs in plant defense against insects and nematodes was investigated. In addition to the three known TIs (KTI1, KTI2 and KTI3), novel inhibitors KTI5, KTI7, and BBI5 were identified in soybean. Their functional role was further examined by overexpression in soybean and Arabidopsis. In vitro enzyme inhibitory assays showed significant increase in trypsin and chymotrypsin inhibitory …


Root Growth Dynamics In Response To Moderate Temperatures, Maura J. Zimmermann Oct 2022

Root Growth Dynamics In Response To Moderate Temperatures, Maura J. Zimmermann

Doctoral Dissertations

Temperature can impact growth in plants though both physical and biological means. Plants physically respond to temperature by scaling their enzyme reaction rate to temperature, such as seen in the redox reactions of photosynthesis. Biologically, a plant can respond to temperature more specifically, such as adjusting its flowering time. Recently, the Baskin lab discovered that cell division in the root of the model plant Arabidopsis thaliana is temperature acclimated (Yang et al., 2017). Between the non-extreme temperatures of 15 and 25˚C cell division and growth zone length are constant. While the rate of cell division increases with temperature, the number …


Investigation Of Basil Downy Mildew Pathogen Survival, New Pathotype Development And Sources Of Quantitative, Kelly S. Allen Oct 2022

Investigation Of Basil Downy Mildew Pathogen Survival, New Pathotype Development And Sources Of Quantitative, Kelly S. Allen

Doctoral Dissertations

Basil downy mildew (BDM) caused by the oomycete pathogen Peronospora belbahrii, threatens sweet basil (Ocimum basilicum) production worldwide. Chemical and cultural control options for BDM are limited, and resistant cultivars have only recently become available for commercial production. To address this challenging agricultural disease, this research investigates BDM epidemiology, occurrences of new pathotypes, and molecular plant-pathogen interactions leading to host resistance or susceptibility. A reproducible low-resource inoculation protocol was developed to harvest P. belbahrii inoculum and propagate BDM for further research. The survival of P. belbahrii sporangia was examined using an in vitro assay to assess germination …


Genome Evolution In The Salicaceae: Genetic Novelty, Horizontal Gene Transfer, And Comparative Genomics, Timothy Yates Aug 2022

Genome Evolution In The Salicaceae: Genetic Novelty, Horizontal Gene Transfer, And Comparative Genomics, Timothy Yates

Doctoral Dissertations

Genome evolution is a powerful force which shapes genomes over time through processes like mutation, horizontal transfer, and sexual reproduction. Although questions which aim to explore genome evolution are broad, they are all understood through the discovery and comparison of genetic variation. For example, genetic diversity may explain differences in phenotypes, etiology of disease, and is essential for phylogenomic analysis. Recently, the democratization of next generation and third generation DNA sequencing technologies have allowed for genomics to produce large amounts of sequence data. This has facilitated the capture of genetic variation at species and population scales.

Populus and Salix are …


Poa Annua: An Annual Species?, Devon E. Carroll May 2022

Poa Annua: An Annual Species?, Devon E. Carroll

Doctoral Dissertations

Poa annua L. is ranked the most troublesome turfgrass weed but can also be a highly desirable turfgrass species. As the Latin name annua implies, the species is thought to persist via an annual life cycle; yet there are many reports in literature of P. annua persisting perennially. Considering that P. annua senescence patterns do not align with other true annual species such as Triticum spp. and Zea mays L., we hypothesized that P. annua presents itself similarly to other perennial, cool-season, turfgrass species that are subject to a confluence of environmental factors in summer that can cause mortality. …


Nodulin 26 Like Intrinsic Proteins: Structurally Similar Membrane Channels With Diverse Functions In Plant Hypoxia Stress, Metalloid Nutrition & Toxicity, Zachary Beamer May 2022

Nodulin 26 Like Intrinsic Proteins: Structurally Similar Membrane Channels With Diverse Functions In Plant Hypoxia Stress, Metalloid Nutrition & Toxicity, Zachary Beamer

Doctoral Dissertations

Plant nodulin 26 intrinsic proteins are categorized into three groups (NIP I, II, and III) based on pore architecture. NIP II and III participate in metalloid nutrition, whilst the function of a third (NIP I) is less understood. Here we investigate the physiological function of one NIP I protein (Arabidopsis thaliana NIP2;1) as a lactic acid channel, and also explore the structural basis for metalloid and water permeability of NIP I and NIP II proteins in general. In addition, a strategy was developed for the purification and crystallization of soybean nodulin 26 as a step towards structure determination of a …


Plant Community Responses To Interactive Anthropogenic Disturbances Along A Natural-Wildland-Urban Gradient And Undergraduate Students’ Attitudes Toward Disturbances, Mali M. Hubert May 2022

Plant Community Responses To Interactive Anthropogenic Disturbances Along A Natural-Wildland-Urban Gradient And Undergraduate Students’ Attitudes Toward Disturbances, Mali M. Hubert

Doctoral Dissertations

Anthropogenic disturbances are defined as any change caused by human activity that alters biodiversity. Wildfire and urbanization disturbances are among the most influential on the landscape because of their individual and interactive properties. Areas deemed wildland-urban interfaces (WUI; area where environment intermingles with human-built structures) are increasing near protected lands because of human population growth and movement, which often facilitates fire ignitions by humans. Houses that are adjacent to or overlap with wildland vegetation can complicate protection of urban development and wildlands from fires. The expansion of the WUI due to population growth will exacerbate fire risk, which can ultimately …


Genetic And Environmental Regulation Of Plant Growth, Kirk J-M Mackinnon Feb 2022

Genetic And Environmental Regulation Of Plant Growth, Kirk J-M Mackinnon

Doctoral Dissertations

Field grown crops are continually exposed to a variety of external stimuli that influence plant responses. Light, temperature, and water availability interact to affect many economically important traits including growth rate, size, and lifespan. My research is focused on the intersection of genetic and environmental factors influencing plant growth. Specifically, I am interested in elucidating the regulation of rhythmic genes in response to photo- and thermocycles and identifying novel candidate genes associated with growth and drought traits. Understanding the gene regulatory networks that mediate time-of-day signaling is vital to identifying candidate genes across the pan-genome associated with traits of interest.


Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field Dec 2021

Calmodulin Like 38 Is Required For Autophagy Of Hypoxia-Induced Cytoplasmic Rna Granules In Arabidopsis Thaliana, Sterling Field

Doctoral Dissertations

In response to the energy crisis resulting from submergence stress and hypoxia, the model plant Arabidopsis thaliana limits non-essential mRNA translation, and accumulates cytosolic stress granules. Stress granules are phase-separated mRNA-protein particles that partition transcripts for various fates: storage, degradation, or return to translation after stress alleviation. Another response by the plant cell to low oxygen stress is the induction of the turnover pathway autophagy. Stress granule regulation by autophagy occurs by a ‘granulophagy’ pathway in yeast and mammalian systems through which parts or whole stress granules are degraded. Whether this occurs in plants has not been investigated.

A connection …


Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro Dec 2021

Erecta Family Genes Regulate The Shoot Apical Meristem And Organ Formation, Daniel A. Degennaro

Doctoral Dissertations

Plants are sessile and must adjust their organ growth to their environments. A reservoir of stem cells in the shoot apical meristem (SAM) supplies cells for differentiation into organs. The SAM must balance organ production with stem cell maintenance. The ERECTA family (ERfs) encodes the leucine-rich repeat receptor-like kinases ERECTA (ER), ERECTA-LIKE 1 (ERL1), and ERL2. ERf signaling regulates organ initiation and stem cell maintenance. Results presented in this work include the following:

1) WUSCHEL (WUS) and CLAVATA3 (CLV3) make up a negative feedback loop to maintain SAM size. WUS and CLV3 expression localization is critical for …


The Characterization Of Traits Associated With Freezing Tolerance In Perennial Ryegrass, Rachael Preston Bernstein Oct 2021

The Characterization Of Traits Associated With Freezing Tolerance In Perennial Ryegrass, Rachael Preston Bernstein

Doctoral Dissertations

Plants are constantly subjected to adverse environmental conditions that alter their growth and productivity, with an estimation that approximately 50% of annual average crop yields are reduced due to abiotic stresses. Freezing stress causes desiccation and ice damage in plants and is becoming more important as temperatures and unpredictable weather patterns increase. Normally, plants acclimate to cold temperatures as winter approaches and deacclimate as temperatures warm in the spring. Cold acclimation in fall is required for plants to build up their cellular defenses against desiccation and intracellular ice formation, while deacclimation is the process in which plants metabolize protective compounds …


Identification And Functional Characterization Of Plant Small Secreted Proteins During Arbuscular Mycorrhizal Symbiosis, Xiaoli Hu Aug 2021

Identification And Functional Characterization Of Plant Small Secreted Proteins During Arbuscular Mycorrhizal Symbiosis, Xiaoli Hu

Doctoral Dissertations

Plant small secreted proteins (SSPs) are sequences of 50 – 250 amino acids in size which are transported out of cells to fulfill multiple functions related to plant growth and development and response to various stresses. With the development of more accurate and affordable genome sequencing technology, an increasing number of SSPs have been predicted using diverse computational tools based on machine learning. Although experimentally validated plant SSPs are still limited, some studies have reported that plant SSPs can be induced and involved in mutualistic relationships between plants and microbes. In Chapter I, known SSPs and their functions in various …


Epigenetic Mechanisms Governing Plant Growth, Development, And Responses To Nematode Parasitism, Meredith M. Bennett May 2021

Epigenetic Mechanisms Governing Plant Growth, Development, And Responses To Nematode Parasitism, Meredith M. Bennett

Doctoral Dissertations

Epigenetic mechanisms, including histone and DNA methylation and microRNAs, play key roles in mediating transcriptional changes during plant development and stress responses. However, how these interconnected epigenetic components regulate gene expression in a spatiotemporal fashion remains partially known. Here, I generated 15 transgenic Arabidopsis GUS reporter lines for genes involved in DNA methylation and demethylation pathways. The spatiotemporal expression patterns of these genes were profiled in various plant organs during development, exogenous phytohormone response, and plant-parasitic nematode pathogenesis. The analyses revealed unique and overlapping expression patterns in roots, shoots, and reproductive organs, emphasizing the importance of a DNA methylation—demethylation equilibrium. …


Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao Dec 2020

Root Phosphomonoesterase As A Vital Component Of Increasing Phosphorus Availability In Tropical Forests, Kristine Grace Manno Cabugao

Doctoral Dissertations

Tropical forests, relative to other terrestrial ecosystems, exchange the largest amount of carbon with the atmosphere and also constitute a significant carbon sink. However, nutrient limitation, particularly of phosphorus (P), could limit growth of tropical forests and their function with the global carbon cycle. Thus, understanding root mechanisms to acquire P is necessary to representing the P cycle and corresponding interactions with plant growth. A large portion of total soil P in tropical forests occurs in organic forms, only accessible through root and microbial production of phosphatase enzymes. These phosphatase enzymes mineralize organic P into orthophosphate, the form of P …


Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther Jul 2020

Origin Of Gene Specificity In The Nitrogen-Fixing Symbiosis, Christina Marie Stonoha-Arther

Doctoral Dissertations

Many legumes form a symbiosis with nitrogen-fixing bacteria found in the soil. This relationship is beneficial to both the plant and the bacteria; the plant receives nitrogen that is otherwise limited, and the bacteria receive fixed carbon. Upon sensing the bacteria, the plant forms a new organ (the nodule) where the bacteria are housed within the cells. Many genes are required for the proper formation and function of nodules; this dissertation is broadly focused on how genes required for nitrogen-fixing symbiosis are co-opted from other cellular processes and how they are specialized for symbiosis. Protein trafficking from the plant to …


Investigating The Transcriptional Regulation Of Secondary Cell Wall Synthesis And Thigmomorphogenesis In The Model Grass Brachypodium Distachyon, Joshua Coomey May 2020

Investigating The Transcriptional Regulation Of Secondary Cell Wall Synthesis And Thigmomorphogenesis In The Model Grass Brachypodium Distachyon, Joshua Coomey

Doctoral Dissertations

A key aspect of plant growth is the synthesis and deposition of cell walls. In specific tissues and cell types including xylem and fiber, a thick secondary wall composed of cellulose, hemicellulose, and lignin is deposited. Secondary cell walls provide a physical barrier that protects plants from pathogens, promotes tolerance to abiotic stresses, and fortifies cells to withstand the forces associated with water transport and the physical weight of plant structures. Grasses have numerous cell wall features that are distinct from eudicots and other plants. Study of the model species Brachypodium distachyon has helped us begin to understand the internal …


Brachypodium Distachyon Gnrf, Swam1 And Swam4 Are Transcriptional Regulators Of Secondary Cell Wall Biosynthesis, Sandra Romero-Gamboa Jul 2019

Brachypodium Distachyon Gnrf, Swam1 And Swam4 Are Transcriptional Regulators Of Secondary Cell Wall Biosynthesis, Sandra Romero-Gamboa

Doctoral Dissertations

Plant cell walls are complex structures that contain a matrix of cellulose, lignin and hemicellulose. The regulation of the biosynthesis of these components has been well-studied in the eudicot plant Arabidopsis thaliana, and a transcriptional network has been elucidated. Several NAC and MYB family transcription factors are key regulators of secondary cell wall biosynthesis, and their functional characterization provides significant insight into the complex underlying transcriptional network. Genetic and structural evidence suggests that genes controlling this process might be different between eudicots and monocots. Here, the model grass Brachypodium distachyon has been selected to characterize the function of GNRF …


The Good, The Bad, And The Ugly: Pollinators As Vectors Of Mummy Berry Disease In Highbush Blueberry, Matthew Boyer Mar 2019

The Good, The Bad, And The Ugly: Pollinators As Vectors Of Mummy Berry Disease In Highbush Blueberry, Matthew Boyer

Doctoral Dissertations

Background: Many plants must balance the need for pollination services with mediating the risk of pollinator-vectored pathogens. Vaccinium corymbosum, highbush blueberry, is negatively affected by an insect-vectored, fungal plant pathogen, Monilinia vaccinii-corymosi (MVC), the cause of mummy berry disease, in which the asexual spore mimics pollen grains and is transferred from blighted tissue to flowers via pollinators, resulting in inedible, hardened fruits. Highbush blueberry plants require outcrossed pollen for maximum yield and fecundity. Therefore, yield of blueberry plants rely on a balance between adequate pollination service and disease avoidance. Approach: To explore the relationship between pollinator community and infection …


Variation And Evolution Of Fruit Ripening Traits In Tomato Species, Ian M. Gillis Oct 2018

Variation And Evolution Of Fruit Ripening Traits In Tomato Species, Ian M. Gillis

Doctoral Dissertations

As angiosperm seeds mature within their ovaries, ovary tissue tends to grow and transform itself into fruit, which aids the success of the seeds. Fruits that are fleshy provide numerous ways to aid in the protection and the dispersal of seeds. First, they keep seeds hidden, encased in hard walls, surrounded by poisons and unpalatable compounds, and second, they undergo developmental changes that facilitate seeds’ release. Tomatoes, a model fleshy fruit, have all these protective traits, and over the course of ripening they become the familiar fruit that is a staple crop around the world. The wild relatives of cultivated …


Grass-Specific Mechanisms Of Iron Uptake: Investigation Of Phytosiderophore Transporters And Discovery Of Novel Iron Deficiency Loci, David Chan Rodriguez Oct 2018

Grass-Specific Mechanisms Of Iron Uptake: Investigation Of Phytosiderophore Transporters And Discovery Of Novel Iron Deficiency Loci, David Chan Rodriguez

Doctoral Dissertations

Iron-deficiency anemia is one of the most prevalent forms of malnutrition worldwide, affecting 1.62 billion people, with the population in developing countries being the most affected. Iron is equally vital in plants to perform essential functions such as photosynthesis. Crop grasses form part of everyday human nutrition, contribute fundamentally to human caloric intake, and, in some parts of the world, are the primary source of food. Grasses acquire iron from the soil by secreting chelator molecules called phytosiderophores to solubilize iron, making it available to be transported by the Yellow Stripe1 (YS1) transporter. In this dissertation, I studied aspects of …


The Interplay Between Polarity Regulators, Calcium, And The Actin Cytoskeleton During Tip Growth, Carlisle Bascom Jr Oct 2018

The Interplay Between Polarity Regulators, Calcium, And The Actin Cytoskeleton During Tip Growth, Carlisle Bascom Jr

Doctoral Dissertations

Plant cell growth is a meticulously regulated process whereby the cell wall is selectively loosened to allow for turgor-pressure driven expansion. The rate of expansion must equal delivery of new material, or the cell will lyse. In many plant cells, this process happens diffusely around the cell. However, a number of plant cells have anisotropic shapes that require exquisite spatial control of secretion. One simple example of anisotropic patterning is tip growth; highly polarized cell expansion utilized by pollen tubes, root hairs, and moss protonemata. Investigating the role various molecules have in tip growth sheds light on how plant cells …


Non-Canonical Signaling From The Etr1 And Etr2 Ethylene Receptors In Arabidopsis Thaliana, Arkadipta Bakshi Dec 2017

Non-Canonical Signaling From The Etr1 And Etr2 Ethylene Receptors In Arabidopsis Thaliana, Arkadipta Bakshi

Doctoral Dissertations

The gaseous phytohormone ethylene regulates several physiological and developmental processes in higher plants. There are five ethylene receptor isoforms that mediate the responses to ethylene in the model plant Arabidopsis thaliana. Prior research has shown that these five ethylene receptor isoforms in Arabidopsis have both overlapping and non-overlapping roles in regulating diverse responses such as growth in air, growth recovery after removal of ethylene, and ethylene stimulated nutational bending. Functional divergence of ETR1 has been determined in controlling some of these traits and in some of these cases, ETR1 subfunctionalization requires the receiver domain. Using homology modeling and sequence …


The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas Jul 2017

The Key Question In Symbiotic Nitrogen Fixation: How Does Host Maintain A Bacterial Symbiont?, Onur Oztas

Doctoral Dissertations

The fact that plants cannot use nitrogen in the gaseous form makes them dependent on the levels of usable nitrogen forms in the soil. Legumes overcome nitrogen limitation by entering a symbiotic association with rhizobia, soil bacteria that convert atmospheric nitrogen into usable ammonia. In root nodules, bacteria are internalized by host plant cells inside an intracellular compartment called the symbiosome where they morphologically differentiate into nitrogen-fixing forms by symbiosome-secreted host proteins. In this project, I explained the host proteins required to maintain bacterial symbionts and described their delivery to the symbiosome. I showed that the SYNTAXIN 132 (SYP132) gene …


Evaluation Of Off-Type Grasses In Interspecific Hybrid Bermudagrass [Cynodon Dactylon (L.) Pers. X C. Transvaalensis Burtt-Davy] Putting Greens, Eric Hall Reasor May 2017

Evaluation Of Off-Type Grasses In Interspecific Hybrid Bermudagrass [Cynodon Dactylon (L.) Pers. X C. Transvaalensis Burtt-Davy] Putting Greens, Eric Hall Reasor

Doctoral Dissertations

The economic impact of the golf industry in the United States (U.S.) in 2011 was estimated to be $176.8 billion. Interspecific hybrid bermudagrasses [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] are some of the most widely utilized grasses on golf courses throughout tropical, subtropical, and temperate climates. In 2007, bermudagrass was grown on 80% of putting green acreage in the southern U.S. ‘Tifgreen’ and ‘Tifdwarf’ were two of the first widely established cultivars on putting greens, but their genetic instability led to the occurrence of phenotypically different off-type (OT) grasses. Several OT grasses were selected and released as …


Computational Analyses Of Mrna Ribosome Loading In Arabidopsis Thaliana, Joseph Benjamin Ernest Aug 2016

Computational Analyses Of Mrna Ribosome Loading In Arabidopsis Thaliana, Joseph Benjamin Ernest

Doctoral Dissertations

Translation of mRNA into protein is a critical step in gene expression, but the principles guiding its regulation at the genome level are not completely understood. Translation can be quantified at a genome scale by measuring the ribosome loading of mRNA—the extent to which mRNA is associated with ribosomes. In this dissertation, I present investigations into how genome-wide ribosome loading is controlled in Arabidopsis thaliana. In chapter 1, I give an overview of regulation of ribosome loading and translation. In chapter 2, I present research demonstrating for the first time that genome-wide ribosome loading in plants is partially controlled by …


Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis Aug 2016

Modification Of Carbohydrate Active Enzymes In Switchgrass (Panicum Virgatum L.) To Improve Saccharification And Biomass Yields For Biofuels, Jonathan Duran Willis

Doctoral Dissertations

The natural recalcitrance of plant cell walls is a major commercial hurdle for plant biomass to be converted into a viable energy source as alternative to fossil fuels. To circumvent this hurdle manipulation of carbohydrate enzymes active in the cellulose and hemicellulose portions of the plant cell wall can be utilized to improve feedstocks. Production of cellulolytic enzymes by plants have been evaluated for reducing the cost associated with lignocellulosic biofuels. Plants have successfully served as bioreactors producing bacterial and fungal glycosyl hydrolases, which have altered plant growth to improve saccharification. A bioprospecting opportunity lies with the utilization of insect …