Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Rare Occurrences Of Free-Living Bacteria Belonging To Sedimenticola From Subtidal Seagrass Beds Associated With The Lucinid Clam, Stewartia Floridana, Aaron M. Goemann Dec 2015

Rare Occurrences Of Free-Living Bacteria Belonging To Sedimenticola From Subtidal Seagrass Beds Associated With The Lucinid Clam, Stewartia Floridana, Aaron M. Goemann

Masters Theses

Lucinid clams and their sulfur-oxidizing endosymbionts comprise two compartments of a three-stage, biogeochemical relationship among the clams, seagrasses, and microbial communities in marine sediments. A population of the lucinid clam, Stewartia floridana, was sampled from a subtidal seagrass bed at Bokeelia Island Seaport in Florida to test the hypotheses: (1) S. floridana, like other lucinids, are more abundant in seagrass beds than bare sediments; (2) S. floridana gill microbiomes are dominated by one bacterial operational taxonomic unit (OTU) at a sequence similarity threshold level of 97% (a common cutoff for species level taxonomy) from 16S rRNA genes; …


Distribution Of Abc Transporter Genes Across The Plant Kingdom, Thomas Scott Lane May 2015

Distribution Of Abc Transporter Genes Across The Plant Kingdom, Thomas Scott Lane

Masters Theses

The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes and functions including cancer resistance in humans, drug resistance among vertebrates, and herbicide resistance in weeds. This superfamily of genes appears to be larger and more diverse in the plant kingdom—yet, we know relatively less about ABC transporter function in plants compared with mammals and bacteria. Therefore, we undertook a plant kingdom-wide transcriptomic survey of ABC transporters to better understand their diversity.

We utilized sequence similarity-based informatics techniques to …