Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

Doctoral Dissertations

Secondary cell wall

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Investigating The Transcriptional Regulation Of Secondary Cell Wall Synthesis And Thigmomorphogenesis In The Model Grass Brachypodium Distachyon, Joshua Coomey May 2020

Investigating The Transcriptional Regulation Of Secondary Cell Wall Synthesis And Thigmomorphogenesis In The Model Grass Brachypodium Distachyon, Joshua Coomey

Doctoral Dissertations

A key aspect of plant growth is the synthesis and deposition of cell walls. In specific tissues and cell types including xylem and fiber, a thick secondary wall composed of cellulose, hemicellulose, and lignin is deposited. Secondary cell walls provide a physical barrier that protects plants from pathogens, promotes tolerance to abiotic stresses, and fortifies cells to withstand the forces associated with water transport and the physical weight of plant structures. Grasses have numerous cell wall features that are distinct from eudicots and other plants. Study of the model species Brachypodium distachyon has helped us begin to understand the internal …


Brachypodium Distachyon Gnrf, Swam1 And Swam4 Are Transcriptional Regulators Of Secondary Cell Wall Biosynthesis, Sandra Romero-Gamboa Jul 2019

Brachypodium Distachyon Gnrf, Swam1 And Swam4 Are Transcriptional Regulators Of Secondary Cell Wall Biosynthesis, Sandra Romero-Gamboa

Doctoral Dissertations

Plant cell walls are complex structures that contain a matrix of cellulose, lignin and hemicellulose. The regulation of the biosynthesis of these components has been well-studied in the eudicot plant Arabidopsis thaliana, and a transcriptional network has been elucidated. Several NAC and MYB family transcription factors are key regulators of secondary cell wall biosynthesis, and their functional characterization provides significant insight into the complex underlying transcriptional network. Genetic and structural evidence suggests that genes controlling this process might be different between eudicots and monocots. Here, the model grass Brachypodium distachyon has been selected to characterize the function of GNRF …