Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Life Sciences

Nonpolar Residues In The Presumptive Pore‐Lining Helix Of Mechanosensitive Channel Msl10 Influence Channel Behavior And Establish A Nonconducting Function, Grigory Maksaev, Jennette K. Shoots, Simran Ohri, Elizabeth S. Haswell Jun 2018

Nonpolar Residues In The Presumptive Pore‐Lining Helix Of Mechanosensitive Channel Msl10 Influence Channel Behavior And Establish A Nonconducting Function, Grigory Maksaev, Jennette K. Shoots, Simran Ohri, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Mechanosensitive (MS) ion channels provide a universal mechanism for sensing and responding to increased membrane tension. MscS‐like (MSL) 10 is a relatively well‐studied MS ion channel from Arabidopsis thaliana that is implicated in cell death signaling. The relationship between the amino acid sequence of MSL10 and its conductance, gating tension, and opening and closing kinetics remains unstudied. Here, we identify several nonpolar residues in the presumptive pore‐lining transmembrane helix of MSL10 (TM6) that contribute to these basic channel properties. F553 and I554 are essential for wild type channel conductance and the stability of the open state. G556 ...


Kelch F-Box Protein Positively Influences Arabidopsis Seed Germination By Targeting Phytochrome-Interacting Factor1, Manoj Majee, Santosh Kumar, Praveen Kumar Kathare, Shuiqin Wu, Derek Gingerich, Nihar R. Nayak, Louai Salaita, Randy Dinkins, Kathleen Martin, Michael Goodin, Lynnette M A Dirk, Taylor D. Lloyd, Ling Zhu, Joseph Chappell, Arthur G. Hunt, Richard D. Vierstra, Enamul Huq, A Bruce Downie Apr 2018

Kelch F-Box Protein Positively Influences Arabidopsis Seed Germination By Targeting Phytochrome-Interacting Factor1, Manoj Majee, Santosh Kumar, Praveen Kumar Kathare, Shuiqin Wu, Derek Gingerich, Nihar R. Nayak, Louai Salaita, Randy Dinkins, Kathleen Martin, Michael Goodin, Lynnette M A Dirk, Taylor D. Lloyd, Ling Zhu, Joseph Chappell, Arthur G. Hunt, Richard D. Vierstra, Enamul Huq, A Bruce Downie

Biology Faculty Publications & Presentations

Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here we show that the Arabidopsis F-BOX protein COLD TEMPERATURE-GERMINATING (CTG)-10, identified by activation tagging, is a positive regulator of this process. When overexpressed (OE), CTG10 hastens aspects of seed germination. CTG10 is expressed predominantly in the hypocotyl, and the protein is localized to the nucleus. CTG10 interacts with PHYTOCHROME-INTERACTING FACTOR 1 (PIF1) and helps regulate its abundance in planta. CTG10-OE accelerates the loss of PIF1 in light, increasing germination efficiency, while PIF1-OE lines fail to complete germination in ...


Phyllotactic Regularity Requires The Paf1 Complex In Arabidopsis, Kateryna Fal, Mengying Liu, Assem Duisembekova, Yassin Refahi, Elizabeth S. Haswell, Olivier Hamant Nov 2017

Phyllotactic Regularity Requires The Paf1 Complex In Arabidopsis, Kateryna Fal, Mengying Liu, Assem Duisembekova, Yassin Refahi, Elizabeth S. Haswell, Olivier Hamant

Biology Faculty Publications & Presentations

In plants, aerial organs are initiated at stereotyped intervals, both spatially (every 137° in a pattern called phyllotaxis) and temporally (at prescribed time intervals called plastochrons). To investigate the molecular basis of such regularity, mutants with altered architecture have been isolated. However, most of them only exhibit plastochron defects and/or produce a new, albeit equally reproducible, phyllotactic pattern. This leaves open the question of a molecular control of phyllotaxis regularity. Here, we show that phyllotaxis regularity depends on the function of VIP proteins, components of the RNA polymerase II-associated factor 1 complex (Paf1c). Divergence angles between successive organs along ...


Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra Oct 2017

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra

Biology Faculty Publications & Presentations

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just ...


Plant Mechanosensitive Ion Channels: An Ocean Of Possibilities, Debarati Basu, Elizabeth S. Haswell Sep 2017

Plant Mechanosensitive Ion Channels: An Ocean Of Possibilities, Debarati Basu, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Mechanosensitive ion channels, transmembrane proteins that directly couple mechanical stimuli to ion flux, serve to sense and respond to changes in membrane tension in all branches of life. In plants, mechanosensitive channels have been implicated in the perception of important mechanical stimuli such as osmotic pressure, touch, gravity, and pathogenic invasion. Indeed, three established families of plant mechanosensitive ion channels play roles in cell and organelle osmoregulation and root mechanosensing - and it is likely that many other channels and functions await discovery. Inspired by recent discoveries in bacterial and animal systems, we are beginning to establish the conserved and the ...


Life Behind The Wall: Sensing Mechanical Cues In Plants, Olivier Hamant, Elizabeth S. Haswell Jul 2017

Life Behind The Wall: Sensing Mechanical Cues In Plants, Olivier Hamant, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.


The Arabidopsis Kinesin-4, Fra1, Requires A High Level Of Processive Motility To Function Correctly, Anindya Ganguly, Logan Demott, Ram Dixit Apr 2017

The Arabidopsis Kinesin-4, Fra1, Requires A High Level Of Processive Motility To Function Correctly, Anindya Ganguly, Logan Demott, Ram Dixit

Biology Faculty Publications & Presentations

Processivity is important for kinesins that mediate intracellular transport. Structure–function analyses of N-terminal kinesins (i.e. kinesins comprising their motor domains at the N-terminus) have identified several non-motor regions that affect processivity in vitro. However, whether these structural elements affect kinesin processivity and function in vivo is not known. Here, we used an Arabidopsis thaliana kinesin-4, called Fragile Fiber 1 (FRA1, also known as KIN4A), which is thought to mediate vesicle transport, to test whether mutations that alter processivity in vitro lead to similar changes in behavior in vivo and whether processivity is important for the function of FRA1 ...


The Rna Polymerase-Associated Factor 1 Complex Is Required For Plant Touch Responses, Gregory S. Jensen, Kateryna Fal, Olivier Hamant, Elizabeth S. Haswell Jan 2017

The Rna Polymerase-Associated Factor 1 Complex Is Required For Plant Touch Responses, Gregory S. Jensen, Kateryna Fal, Olivier Hamant, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Thigmomorphogenesis is a stereotypical developmental alteration in the plant body plan that can be induced by repeatedly touching plant organs. To unravel how plants sense and record multiple touch stimuli we performed a novel forward genetic screen based on the development of a shorter stem in response to repetitive touch. The touch insensitive (ths1) mutant identified in this screen is defective in some aspects of shoot and root thigmomorphogenesis. The ths1 mutant is an intermediate loss-of-function allele of VERNALIZATION INDEPENDENCE 3 (VIP3), a previously characterized gene whose product is part of the RNA polymerase II-associated factor 1 (Paf1) complex. The ...


Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal Nov 2016

Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal

Biology Faculty Publications & Presentations

Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed ...


Msl1 Is A Mechanosensitive Ion Channel That Dissipates Mitochondrial Membrane Potential And Maintains Redox Homeostasis In Mitochondria During Abiotic Stress, Chun Pong Lee, Grigory Maksaev, Gregory S. Jensen, Monika W. Murcha, Margaret E. Wilson, Mark Fricker, Ruediger Hell, Elizabeth S. Haswell, A Harvey Millar, Lee J. Sweetlove Nov 2016

Msl1 Is A Mechanosensitive Ion Channel That Dissipates Mitochondrial Membrane Potential And Maintains Redox Homeostasis In Mitochondria During Abiotic Stress, Chun Pong Lee, Grigory Maksaev, Gregory S. Jensen, Monika W. Murcha, Margaret E. Wilson, Mark Fricker, Ruediger Hell, Elizabeth S. Haswell, A Harvey Millar, Lee J. Sweetlove

Biology Faculty Publications & Presentations

Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in ...


Plastid Osmotic Stress Influences Cell Differentiation At The Plant Shoot Apex, Margaret E. Wilson, Matthew Mixdorf, R Howard Berg, Elizabeth S. Haswell Sep 2016

Plastid Osmotic Stress Influences Cell Differentiation At The Plant Shoot Apex, Margaret E. Wilson, Matthew Mixdorf, R Howard Berg, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The balance between proliferation and differentiation in the plant shoot apical meristem is controlled by regulatory loops involving the phytohormone cytokinin and stem cell identity genes. Concurrently, cellular differentiation in the developing shoot is coordinated with the environmental and developmental status of plastids within those cells. Here, we employ an Arabidopsis thaliana mutant exhibiting constitutive plastid osmotic stress to investigate the molecular and genetic pathways connecting plastid osmotic stress with cell differentiation at the shoot apex. msl2 msl3 mutants exhibit dramatically enlarged and deformed plastids in the shoot apical meristem, and develop a mass of callus tissue at the shoot ...


Rna Sequencing Analysis Of The Msl2msl3, Crl, And Ggps1 Mutants Indicates That Diverse Sources Of Plastid Dysfunction Do Not Alter Leaf Morphology Through A Common Signaling Pathway, Darron R. Luesse, Margaret E. Wilson, Elizabeth S. Haswell Dec 2015

Rna Sequencing Analysis Of The Msl2msl3, Crl, And Ggps1 Mutants Indicates That Diverse Sources Of Plastid Dysfunction Do Not Alter Leaf Morphology Through A Common Signaling Pathway, Darron R. Luesse, Margaret E. Wilson, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Determining whether individual genes function in the same or in different pathways is an important aspect of genetic analysis. As an alternative to the construction of higher-order mutants, we used contemporary expression profiling methods to perform pathway analysis on several Arabidopsis thaliana mutants, including the mscS-like (msl)2msl3 double mutant. MSL2 and MSL3 are implicated in plastid ion homeostasis, and msl2msl3 double mutants exhibit leaves with a lobed periphery, a rumpled surface, and disturbed mesophyll cell organization. Similar developmental phenotypes are also observed in other mutants with defects in a range of other chloroplast or mitochondrial functions, including biogenesis ...


Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra Dec 2015

Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra

Biology Faculty Publications & Presentations

Chloroplasts depend on the nucleus for much of their proteome. Consequently, strong transcriptional coordination exists between the genomes, which is attuned to the developmental and physiological needs of the organelle. Recent studies highlight that the post-translational modifier ubiquitin adds another layer to plastid homeostasis and even helps eliminate damaged chloroplasts.


Stochastic Models For Plant Microtubule Self-Organization And Structure, Ezgi Can Eren, Ram Dixit, Natarajan Gautam Nov 2015

Stochastic Models For Plant Microtubule Self-Organization And Structure, Ezgi Can Eren, Ram Dixit, Natarajan Gautam

Biology Faculty Publications & Presentations

One of the key enablers of shape and growth in plant cells is the cortical microtubule (CMT) system, which is a polymer array that forms an appropriately-structured scaffolding in each cell. Plant biologists have shown that stochastic dynamics and simple rules of interactions between CMTs can lead to a coaligned CMT array structure. However, the mechanisms and conditions that cause CMT arrays to become organized are not well understood. It is prohibitively time-consuming to use actual plants to study the effect of various genetic mutations and environmental conditions on CMT self-organization. In fact, even computer simulations with multiple replications are ...


Mechanosensitive Channel Msl8 Regulates Osmotic Forces During Pollen Hydration And Germination, Eric S. Hamilton, Gregory S. Jensen, Grigory Maksaev, Andrew Katims, Ashley M. Sherp, Elizabeth S. Haswell Oct 2015

Mechanosensitive Channel Msl8 Regulates Osmotic Forces During Pollen Hydration And Germination, Eric S. Hamilton, Gregory S. Jensen, Grigory Maksaev, Andrew Katims, Ashley M. Sherp, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Pollen grains undergo dramatic changes in cellular water potential as they deliver the male germ line to female gametes, and it has been proposed that mechanosensitive ion channels may sense the resulting mechanical stress. Here, we identify and characterize MscS-like 8 (MSL8), a pollen-specific, membrane tension–gated ion channel required for pollen to survive the hypoosmotic shock of rehydration and for full male fertility. MSL8 negatively regulates pollen germination but is required for cellular integrity during germination and tube growth. MSL8 thus senses and responds to changes in membrane tension associated with pollen hydration and germination. These data further suggest ...


Fuels And Fires Influence Vegetation Via Above- And Belowground Pathways In A High-Diversity Plant Community, Paul R. Gagnon, Heather A. Passmore, Matthew Slocum, Jonathan A. Myers, Kyle E. Harms, William J. Platt, C.E. Timothy Paine Jun 2015

Fuels And Fires Influence Vegetation Via Above- And Belowground Pathways In A High-Diversity Plant Community, Paul R. Gagnon, Heather A. Passmore, Matthew Slocum, Jonathan A. Myers, Kyle E. Harms, William J. Platt, C.E. Timothy Paine

Biology Faculty Publications & Presentations

  1. Fire strongly influences plant populations and communities around the world, making it an important agent of plant evolution. Fire influences vegetation through multiple pathways, both above- and belowground. Few studies have yet attempted to tie these pathways together in a mechanistic way through soil heating even though the importance of soil heating for plants in fire-prone ecosystems is increasingly recognized.
  2. Here we combine an experimental approach with structural equation modelling (SEM) to simultaneously examine multiple pathways through which fire might influence herbaceous vegetation. In a high-diversity longleaf pine groundcover community in Louisiana, USA, we manipulated fine-fuel biomass and monitored the ...


Expressing And Characterizing Mechanosensitive Channels In Xenopus Oocytes, Grigory Maksaev, Elizabeth S. Haswell May 2015

Expressing And Characterizing Mechanosensitive Channels In Xenopus Oocytes, Grigory Maksaev, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The oocytes of the African clawed frog (Xenopus laevis) comprise one of the most widely used membrane protein expression systems. While frequently used for studies of transporters and ion channels, the application of this system to the study of mechanosensitive ion channels has been overlooked, perhaps due to a relative abundance of native expression systems. Recent advances, however, have illustrated the advantages of the oocyte system for studying plant and bacterial mechanosensitive channels. Here we describe in detail the methods used for heterologous expression and characterization of bacterial and plant mechanosensitive channels in Xenopus oocytes.


The Ongoing Search For The Molecular Basis Of Plant Osmosensing, Elizabeth S. Haswell, Paul E. Verslues Apr 2015

The Ongoing Search For The Molecular Basis Of Plant Osmosensing, Elizabeth S. Haswell, Paul E. Verslues

Biology Faculty Publications & Presentations

Introduction: Cell viability and metabolism depend on cytoplasmic water and solute content, and organisms have evolved mechanisms to sense changes in cell water content, solute concentrations, cell volume, and/or turgor. This Perspective addresses the response to osmotic challenge in land plants and describes their special dependence on cellular water status for growth and development. Understanding how plants cope with water limitation may allow us to mitigate the agricultural effects of drought, a critical limitation on global crop productivity that is likely to increase in severity as the climate changes (Long and Ort, 2010). The signaling pathways by which plants ...


Elevational Gradients In Β-Diversity Reflect Variation In The Strength Of Local Community Assembly Mechanisms Across Spatial Scales, J Sebastián Tello, Jonathan A. Myers, Manuel J. Macia, Alfredo F. Fuentes, Leslie Cayola, Gabriel Arellano, M Isabel Loza, Vania Torrez, Maritza Cornejo, Tatiana B. Miranda, Peter M. Jørgensen Mar 2015

Elevational Gradients In Β-Diversity Reflect Variation In The Strength Of Local Community Assembly Mechanisms Across Spatial Scales, J Sebastián Tello, Jonathan A. Myers, Manuel J. Macia, Alfredo F. Fuentes, Leslie Cayola, Gabriel Arellano, M Isabel Loza, Vania Torrez, Maritza Cornejo, Tatiana B. Miranda, Peter M. Jørgensen

Biology Faculty Publications & Presentations

Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape ...


The Fragile Fiber1 Kinesin Contributes To Cortical Microtubule-Mediated Trafficking Of Cell Wall Components, Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. Mcclosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, Ram Dixit Mar 2015

The Fragile Fiber1 Kinesin Contributes To Cortical Microtubule-Mediated Trafficking Of Cell Wall Components, Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. Mcclosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, Ram Dixit

Biology Faculty Publications & Presentations

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 ...


United In Diversity: Mechanosensitive Ion Channels In Plants, Eric S. Hamilton, Angela M. Schlegel, Elizabeth S. Haswell Jan 2015

United In Diversity: Mechanosensitive Ion Channels In Plants, Eric S. Hamilton, Angela M. Schlegel, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MSion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or ...


Arabidopsis Msl10 Has A Regulated Cell Death Signaling Activity That Is Separable From Its Mechanosensitive Ion Channel Activity, Kira M. Veley, Grigory Maksaev, Elizabeth M. Frick, Emma January, Sarah C. Kloepper, Elizabeth S. Haswell Jan 2014

Arabidopsis Msl10 Has A Regulated Cell Death Signaling Activity That Is Separable From Its Mechanosensitive Ion Channel Activity, Kira M. Veley, Grigory Maksaev, Elizabeth M. Frick, Emma January, Sarah C. Kloepper, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

Members of the MscS superfamily of mechanosensitive ion channels function as osmotic safety valves, releasing osmolytes under increased membrane tension. MscS homologs exhibit diverse topology and domain structure, and it has been proposed that the more complex members of the family might have novel regulatory mechanisms or molecular functions. Here, we present a study of MscS-Like (MSL)10 from Arabidopsis thaliana that supports these ideas. High-level expression of MSL10-GFP in Arabidopsis induced small stature, hydrogen peroxide accumulation, ectopic cell death, and reactive oxygen species- and cell death-associated gene expression. Phosphomimetic mutations in the MSL10 N-terminal domain prevented these phenotypes. The ...


Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit Dec 2013

Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit

Biology Faculty Publications & Presentations

Throughout the eukaryotic world, kinesins serve as molecular motors for the directional transport of cellular cargo along microtubule tracks. Plants contain a large number of kinesins that have conserved as well as specialized functions. These functions depend on mechanisms that regulate when, where and what kinesins transport. In this review, we highlight recent studies that have revealed conserved modes of regulation between plant kinesins and their non-photosynthetic counterparts. These findings lay the groundwork for understanding how plant kinesins are differentially engaged in various cellular processes that underlie plant growth and development.


Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit Nov 2013

Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit

Biology Faculty Publications & Presentations

Highlights

  • Severing primarily depolymerizes the overlying CMT at crossover sites
  • Severing probability increases nonlinearly with crossover time
  • Katanin localizes to crossover sites and is required for severing
  • Loss of katanin activity prevents the formation of coaligned CMT arrays

Summary
The noncentrosomal cortical microtubules (CMTs) of land plants form highly ordered parallel arrays that mediate cell morphogenesis by orienting cellulose deposition [1, 2 and 3]. Since new CMTs initiate from dispersed cortical sites at random orientations [4], parallel array organization is hypothesized to require selective pruning of CMTs that are not in the dominant orientation. Severing of CMTs at crossover sites ...


Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell Aug 2013

Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels ...


Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit Jul 2013

Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit

Biology Faculty Publications & Presentations

The interphase cortical microtubules (CMTs) of plant cells form strikingly ordered arrays in the absence of a dedicated microtubule-organizing center. Considerable research effort has focused on activities such as bundling and severing that occur after CMT nucleation and are thought to be important for generating and maintaining ordered arrays. In this review, we focus on how nucleation affects CMT array organization. The bulk of CMTs are initiated from γ-tubulin-containing nucleation complexes localized to the lateral walls of pre-existing CMTs. These CMTs grow either at an acute angle or parallel to the pre-existing CMT. Although the impact of microtubule-dependent nucleation is ...


Plant Cytoskeleton: Della Connects Gibberellins To Microtubules, Ram Dixit Jun 2013

Plant Cytoskeleton: Della Connects Gibberellins To Microtubules, Ram Dixit

Biology Faculty Publications & Presentations

A new study reveals that DELLA proteins directly interact with the prefoldin complex, thus regulating tubulin subunit availability in a gibberellin-dependent manner. This finding provides a mechanistic link between the growth-promoting plant hormone gibberellin and cortical microtubule organization.


Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit Oct 2012

Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins ...


Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit Mar 2012

Computer Simulation And Mathematical Models Of The Noncentrosomal Plant Cortical Microtubule Cytoskeleton, Ezgi Can Eren, Natarajan Gautam, Ram Dixit

Biology Faculty Publications & Presentations

There is rising interest in modeling the noncentrosomal cortical microtubule cytoskeleton of plant cells, particularly its organization into ordered arrays and the mechanisms that facilitate this organization. In this review, we discuss quantitative models of this highly complex and dynamic structure both at a cellular and molecular level. We report differences in methodologies and assumptions of different models as well as their controversial results. Our review provides insights for future studies to resolve these controversies, in addition to underlining the common results between various models. We also highlight the need to compare the results from simulation and mathematical models with ...


Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit Feb 2012

Single-Molecule Analysis Of The Microtubule Cross-Linking Protein Map65-1 Reveals A Molecular Mechanism For Contact-Angle-Dependent Microtubule Bundling, Amanda Tulin, Sheri Mcclerklin, Yue Huang, Ram Dixit

Biology Faculty Publications & Presentations

Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters between them. To investigate how cells select particular MT contact angles for bundling, we used an in vitro reconstitution approach consisting of dynamic MTs and the MT-cross-linking protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for antiparallel overlapping MTs is about three times higher than its affinity for single MTs and parallel overlapping MTs. We also ...