Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

The Variation Of Productivity And Its Allocation Along A Tropical Elevation Gradient: A Whole Carbon Budget Perspective, Yadvinder Malhi, Cécile A. J. Girardin, Gregory R. Goldsmith, Christopher E. Doughty, Norma Salinas, Daniel B. Metcalfe, Walter Huaraca Huasco, Javier E. Silva-Espejo, Jhon Del Aguilla-Pasquell, Filio Farfán Amézquita, Luiz E.O.C. Aragão, Rossella Guerrieri, Françoise Yoko Ishida, Nur Bahar, William Farfan-Rios, Oliver L. Phillips, Patrick Meir, Miles Silman Oct 2016

The Variation Of Productivity And Its Allocation Along A Tropical Elevation Gradient: A Whole Carbon Budget Perspective, Yadvinder Malhi, Cécile A. J. Girardin, Gregory R. Goldsmith, Christopher E. Doughty, Norma Salinas, Daniel B. Metcalfe, Walter Huaraca Huasco, Javier E. Silva-Espejo, Jhon Del Aguilla-Pasquell, Filio Farfán Amézquita, Luiz E.O.C. Aragão, Rossella Guerrieri, Françoise Yoko Ishida, Nur Bahar, William Farfan-Rios, Oliver L. Phillips, Patrick Meir, Miles Silman

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

  • Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation.

  • We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru.

  • Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in …


Photosynthetic Acclimation To Warming And Elevated Co2 In Two Antarctic Vascular Plant Species, Vi Nt Bui Mar 2016

Photosynthetic Acclimation To Warming And Elevated Co2 In Two Antarctic Vascular Plant Species, Vi Nt Bui

Electronic Thesis and Dissertation Repository

Climate change can affect the performance of the only two vascular plant species found in Antarctica, Deschampsia antarctica and Colobanthus quitensis. I investigated the response of these two species to warming and elevated CO2 in terms of photosynthesis and leaf anatomy. While photosynthesis increased directly with rising temperature and CO2, it showed no acclimation to changes in growth temperature, and a small degree of acclimation to growth under elevated CO2. Likewise, leaf anatomy displayed little plasticity in response to changes in the growth environment, although D. antarctica’s stomatal groove structure was modified under …


The Draft Genome Of The C3 Panicoid Grass Species Dichanthelium Oligosanthes, Anthony J. Studer, James C. Schnable, Sarit Weissmann, Allison R. Kolbe, Michael R. Mckain, Ying Shao, Asaph B. Cousins, Elizabeth A. Kellogg, Thomas P. Brutnell Jan 2016

The Draft Genome Of The C3 Panicoid Grass Species Dichanthelium Oligosanthes, Anthony J. Studer, James C. Schnable, Sarit Weissmann, Allison R. Kolbe, Michael R. Mckain, Ying Shao, Asaph B. Cousins, Elizabeth A. Kellogg, Thomas P. Brutnell

Department of Agronomy and Horticulture: Faculty Publications

Background: Comparisons between C3 and C4 grasses often utilize C3 species from the subfamilies Ehrhartoideae or Pooideae and C4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C3 panicoid grass Dichanthelium oligosanthes from the independent C4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C3 and C4 grasses.

Results: …