Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Expression Of A Constitutively Active Nitrate Reductase Variant In Tobacco Reduces Tobacco-Specific Nitrosamine Accumulation In Cured Leaves And Cigarette Smoke, Jianli Lu, Leichen Zhang, Ramsey S. Lewis, Lucien Bovet, Simon Goepfert, Anne M. Jack, James D. Crutchfield, Huihua Ji, Ralph E. Dewey Jun 2016

Expression Of A Constitutively Active Nitrate Reductase Variant In Tobacco Reduces Tobacco-Specific Nitrosamine Accumulation In Cured Leaves And Cigarette Smoke, Jianli Lu, Leichen Zhang, Ramsey S. Lewis, Lucien Bovet, Simon Goepfert, Anne M. Jack, James D. Crutchfield, Huihua Ji, Ralph E. Dewey

Kentucky Tobacco Research and Development Center Faculty Publications

Burley tobaccos (Nicotiana tabacum) display a nitrogen-use-deficiency phenotype that is associated with the accumulation of high levels of nitrate within the leaf, a trait correlated with production of a class of compounds referred to as tobacco-specific nitrosamines (TSNAs). Two TSNA species, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN), have been shown to be strong carcinogens in numerous animal studies. We investigated the potential of molecular genetic strategies to lower nitrate levels in burley tobaccos by overexpressing genes encoding key enzymes of the nitrogen-assimilation pathway. Of the various constructs tested, only the expression of a constitutively active nitrate reductase (NR) …


Changes In Oxidative Patterns During Dormancy Break By Warm And Cold Stratification In Seeds Of An Edible Fruit Tree, Dilinuer Shalimu, Jia Sun, Carol C. Baskin, Jerry M. Baskin, Liwei Sun, Yujun Liu May 2016

Changes In Oxidative Patterns During Dormancy Break By Warm And Cold Stratification In Seeds Of An Edible Fruit Tree, Dilinuer Shalimu, Jia Sun, Carol C. Baskin, Jerry M. Baskin, Liwei Sun, Yujun Liu

Biology Faculty Publications

The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1–42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1–84 days of cold stratification alone, were used …


Transcriptional Regulation Of Specialized Metabolites In Arabidopsis Thaliana And Catharanthus Roseus, Craig M. Schluttenhofer Jan 2016

Transcriptional Regulation Of Specialized Metabolites In Arabidopsis Thaliana And Catharanthus Roseus, Craig M. Schluttenhofer

Theses and Dissertations--Plant and Soil Sciences

For millennia humans have utilized plant specialized metabolites for health benefits, fragrances, poisons, spices, and medicine. Valued metabolites are often produced in small quantities and may command high prices. Understanding when and how the plant synthesizes these compounds is important for improving their production. Phytohormone signaling cascades, such as jasmonate (JA) activate or repress transcription factors (TF) controlling expression of metabolite biosynthetic genes. TFs regulating specialized metabolite biosynthetic genes can be manipulated to engineer plants with increased metabolite production.

WRKY transcription factor are known components of both JA signaling cascades and regulation of specialized metabolism. The presence of WRKY binding …


Insights Into Triterpene Metabolism In Model Monocotyledonous And Oilseed Plants Genetically Engineered With Genes From Botryococcus Braunii, Chase F. Kempinski Jan 2016

Insights Into Triterpene Metabolism In Model Monocotyledonous And Oilseed Plants Genetically Engineered With Genes From Botryococcus Braunii, Chase F. Kempinski

Theses and Dissertations--Plant and Soil Sciences

Isoprenoids are one of the most diverse classes of natural products and are all derived from universal five carbon, prenyl precursors. Squalene and botryococcene are linear, hydrocarbon triterpenes (thirty carbon compounds with six prenyl units) that have industrial and medicinal values. Squalene is produced by all eukaryotes as it is the first committed precursor to sterols, while botryococcene is uniquely produced by the green algae, Botryococcus braunii (race B). Natural sources for these compounds exist, but there is a desire for more renewable production platforms. The model plant Arabidopsis thaliana was engineered to accumulate botryococcene and squalene in its oil …


Probing The Plant Cell Wall With Herbicides: A Chemical Genetics Approach, Chad B. Brabham Jan 2016

Probing The Plant Cell Wall With Herbicides: A Chemical Genetics Approach, Chad B. Brabham

Theses and Dissertations--Plant and Soil Sciences

The primary cell wall is a highly organized multi-layered matrix of polysaccharides (cellulose, hemi-cellulose, and pectin). The ability of the rigid cell wall to sufficiently loosen to allow growth is a complex process that differs considerably between grasses monocots and dicots. Cellulose is the major structural component required for anisotropic cell expansion and is synthesized by CELLULOSE SYNTHASE A (CesA) proteins. Here, our objectives were two-fold: 1) dissect cell walls and cellulose biosynthesis in dicots and grasses using chemical biology and reverse genetic approaches 2) characterize and classify the inhibitory mechanisms of cellulose biosynthesis inhibitors (CBIs). A reverse genetics TILLING …


Investigation Into The Cell Wall And Cellulose Biosynthesis In Model Species And In The C4 Model Plant Setaria Viridis, Mizuki Tateno Jan 2016

Investigation Into The Cell Wall And Cellulose Biosynthesis In Model Species And In The C4 Model Plant Setaria Viridis, Mizuki Tateno

Theses and Dissertations--Plant and Soil Sciences

A uniform feature of all plant cells is the presence of a cell wall. The cell wall functions in facilitating directional expansion and is therefore important for cell shape and morphogenesis. All plant cell walls contain cellulose microfibrils embedded in a network of polysaccharides, lignin and protein. Cellulose is evolutionarily conserved and is made by all plants as well as other members of various taxonomic kingdoms. From a human perspective, the field of renewable energy has had an ever increasing interest in using the cell wall for production of renewable platform chemicals and fuels. However, the biosynthesis of these components …