Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Biology

PDF

Dartmouth College

Pharmacology

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Nectar Secondary Compounds Affect Self-Pollen Transfer: Implications For Female And Male Reproduction, Rebecca E. Irwin, Lynn S. Adler Aug 2008

Nectar Secondary Compounds Affect Self-Pollen Transfer: Implications For Female And Male Reproduction, Rebecca E. Irwin, Lynn S. Adler

Dartmouth Scholarship

Pollen movement within and among plants affects inbreeding, plant fitness, and the spatial scale of genetic differentiation. Although a number of studies have assessed how plant and floral traits influence pollen movement via changes in pollinator behavior, few have explored how nectar chemical composition affects pollen transfer. As many as 55% of plants produce secondary compounds in their nectar, which is surprising given that nectar is typically thought to attract pollinators. We tested the hypothesis that nectar with secondary compounds may benefit plants by encouraging pollinators to leave plants after visiting only a few flowers, thus reducing self-pollen transfer. We …


A Strong Constitutive Ethylene-Response Phenotype Conferred On Arabidopsis Plants Containing Null Mutations In The Ethylene Receptors Etr1 And Ers1, Xiang Qu, Brenda P. Hall, Zhiyong Gao, G. Eric Schaller Jan 2007

A Strong Constitutive Ethylene-Response Phenotype Conferred On Arabidopsis Plants Containing Null Mutations In The Ethylene Receptors Etr1 And Ers1, Xiang Qu, Brenda P. Hall, Zhiyong Gao, G. Eric Schaller

Dartmouth Scholarship

The ethylene receptor family of Arabidopsis consists of five members, falling into two subfamilies. Subfamily 1 is composed of ETR1 and ERS1, and subfamily 2 is composed of ETR2, ERS2, and EIN4. Although mutations have been isolated in the genes encoding all five family members, the only previous insertion allele of ERS1 (ers1-2) is a partial loss-of-function mutation based on our analysis. The purpose of this study was to determine the extent of signaling mediated by subfamily-1 ethylene receptors through isolation and characterization of null mutations.