Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physiology

Mice

Biology Faculty Publications

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

High-Fat Feeding Does Not Disrupt Daily Rhythms In Female Mice Because Of Protection By Ovarian Hormones, Brian T. Palmisano, John M. Stafford, Julie S. Pendergast Mar 2017

High-Fat Feeding Does Not Disrupt Daily Rhythms In Female Mice Because Of Protection By Ovarian Hormones, Brian T. Palmisano, John M. Stafford, Julie S. Pendergast

Biology Faculty Publications

Obesity in women is increased by the loss of circulating estrogen after menopause. Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is not known whether ovarian hormones interact with the circadian system to protect females from obesity. During high-fat feeding, male C57BL/6J mice develop profound obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily rhythms in female mice were resistant to disruption from high-fat diet. We fed female PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured …