Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

C-Met Initiates Epithelial Scattering Through Transient Calcium Influxes And Nfat-Dependent Gene Transcription, Peter R. Langford Dec 2011

C-Met Initiates Epithelial Scattering Through Transient Calcium Influxes And Nfat-Dependent Gene Transcription, Peter R. Langford

Theses and Dissertations

Hepatocyte growth factor (HGF) signaling drives epithelial cells to scatter by breaking cell-cell adhesions and migrating as solitary cells, a process that parallels epithelial-mesenchymal transition. HGF binds and activates the c-Met receptor tyrosine kinase, but downstream signaling required for scattering remains poorly defined. This study addresses this shortcoming in a number of ways.A high-throughput in vitro drug screen was employed to identify proteins necessary in this HGF-induced signaling. Cells were tested for reactivity to HGF stimulation in a Boyden chamber assay. This tactic yielded several small molecules that block HGF-induced scattering, including a calcium channel blocker. Patch clamping was used …


Store-Operated Ca(2+) Entry (Soce) Contributes To Normal Skeletal Muscle Contractility In Young But Not In Aged Skeletal Muscle, Angela M. Thornton, Xiaoli Zhao, Noah Weisleder, Leticia S. Brotto, Sylvain Bougoin, Thomas M. Nosek, Michael B. Reid, Brian Hardin, Zui Pan, Jianjie Ma, Jerome Parness, Marco Brotto Jun 2011

Store-Operated Ca(2+) Entry (Soce) Contributes To Normal Skeletal Muscle Contractility In Young But Not In Aged Skeletal Muscle, Angela M. Thornton, Xiaoli Zhao, Noah Weisleder, Leticia S. Brotto, Sylvain Bougoin, Thomas M. Nosek, Michael B. Reid, Brian Hardin, Zui Pan, Jianjie Ma, Jerome Parness, Marco Brotto

Physiology Faculty Publications

Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular …