Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

House Finches, Carpodacus Mexicanus: Hormones, Stress, And Song Control Regions, Katherine Olivia Ganster Dec 2012

House Finches, Carpodacus Mexicanus: Hormones, Stress, And Song Control Regions, Katherine Olivia Ganster

Master's Theses

Song production in songbirds is controlled by parts of the brain known as the song control regions (SCRs). During spring, gonads increase in size, males sing to attract mates, and SCRs become larger. This neuroplasticity is controlled by the change in day length and increased plasma testosterone (T) levels. Plasma T can be reduced by stress through the production of corticosterone (CORT), through the production of beta-endorphin, or through direct effects on the testes via the nervous system. We determined the T, estradiol, and CORT hormonal profiles of wild House Finches by capturing and sampling blood from the finches every …


Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid Aug 2012

Physiologically-Based Pharmacokinetic Modeling Of Acetaminophen Metabolism And Toxicity, David M. Ng, Ali Navid

STAR Program Research Presentations

Acetaminophen is a common analgesic and antipyretic. Metabolism of acetaminophen and acetaminophen-induced liver necrosis are predicted using physiologically-based pharmacokinetic (PBPK) modeling. Pharmacokinetic means the model determines where the drug is distributed in the body over time. Physiologically-based means the anatomy and physiology of the human body is reflected in the structure and functioning of the model. Acetaminophen is usually safe and effective when taken as recommended, but consumption at higher levels may lead to liver damage. Additionally, other factors such as alcoholic liver disease, smoking, and malnutrition affect the maximum safe dose of acetaminophen.


The Proteomic Response Of Sea Squirts (Genus Ciona Congeners) To Hyposalinity Stress, James S. Koman Mar 2012

The Proteomic Response Of Sea Squirts (Genus Ciona Congeners) To Hyposalinity Stress, James S. Koman

Master's Theses

The ascidian species Ciona savignyi and C. intestinalis are invasive species but show interspecific differences in their population response to hypo-saline stress associated with heavy winter-run off events that are predicted to become more frequent due to climate change. Despite an almost world-wide distribution, C. intestinalis seems to be more susceptible to hypo-saline stress than the geographically more limited C. savignyi. Given that the genomes of both species are fully sequenced, we were able to compare their proteomic response to both acute and chronic salinity to characterize the mechanisms that are responsible for setting tolerance limits to hyposaline conditions …