Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

University of Montana

Permalloys

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Size Dependence Of Static And Dynamic Magnetic Properties In Nanoscale Square Permalloy Antidot Arrays, Minghui Yu, Leszek M. Malkinski, Leonard Spinu, Weilie Zhou, Scott L. Whittenburg Mar 2007

Size Dependence Of Static And Dynamic Magnetic Properties In Nanoscale Square Permalloy Antidot Arrays, Minghui Yu, Leszek M. Malkinski, Leonard Spinu, Weilie Zhou, Scott L. Whittenburg

Chemistry and Biochemistry Faculty Publications

Permalloy antidot arrays with different square hole sizes ( , , and ) have been fabricated by means of electron-beam lithography and lift-off techniques. The smaller square hole size results in enhanced remanence and reduced coercivity in the antidot array. Multiple resonance modes were clearly observed for the magnetic field applied normal to the array plane, and double uniform resonance modes occurred when the field deviated more than 30° from the normal to the plane. Two distinct dipolar field patterns with different orientations and magnitudes split the uniform resonance into double resonance modes. The double resonance modes show uniaxial in-plane …


Preparation, Structural Characterization, And Dynamic Properties Investigation Of Permalloy Antidot Arrays, Andriy Vovk, Leszek M. Malkinski, Scott L. Whittenburg, Charles O'Connor, Jin-Seung Jung, Suk-Hong Min May 2005

Preparation, Structural Characterization, And Dynamic Properties Investigation Of Permalloy Antidot Arrays, Andriy Vovk, Leszek M. Malkinski, Scott L. Whittenburg, Charles O'Connor, Jin-Seung Jung, Suk-Hong Min

Chemistry and Biochemistry Faculty Publications

Regular nanosized structures are considered to be promising materials for magnetic information storage media with high density of information. Recently attention was paid to static and dynamic magnetic properties arising from dimensional confinement in such nanostructures. Here we present an investigation of permalloy antidot arrays of different thicknesses. Thin permalloyfilms of thickness ranging from were deposited on nanoporous membranes with a pore size of . It was found that additional ferromagnetic resonance peaks appear for film thicknesses below , while films with larger thicknesses show resonanceproperties similar to continuous films. A comparison between the filmsdeposited onto Si wafers and porous …